【題目】已知函數.
(1)當時,判斷函數的奇偶性并證明;
(2)討論的零點個數.
【答案】(Ⅰ)詳見解析; (Ⅱ)詳見解析.
【解析】試題分析:(1)利用奇偶性的定義,判斷并證明得為奇函數;(2)分參得,判斷其單調性和值域,得零點個數的情況。
試題解析:
解法一:(Ⅰ)當時,函數,該函數為奇函數.
證明如下:
依題意得函數的定義域為R,
又
所以,函數為奇函數.
(Ⅱ)因為
所以 ,
因為函數在上單調遞增且值域為
所以, 在上單調遞減且值域為
所以,當或時,函數無零點;
當時,函數有唯一零點.
解法二:(Ⅰ)當時,函數,該函數為奇函數.
證明如下:
依題意有函數定義域為R,
又
=
即.
所以,函數為奇函數.
(Ⅱ)問題等價于討論方程=0的解的個數。
由,得
當時,得,即方程無解;
當時,得,
當即時,方程有唯一解;
當即或時,方程無解.
綜上所述,當或時,函數無零點;
當時,函數有唯一零點.
科目:高中數學 來源: 題型:
【題目】某企業(yè)常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩(wěn)增長.記2009年為第1年,且前4年中,第年與年產量萬件之間的關系如下表所示:
若近似符合以下三種函數模型之一: === .
(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;
(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少,試根據所建立的函數模型,確定2015年的年產量.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aln(x+1)+ x2﹣x,其中a為實數.
(Ⅰ)討論函數f(x)的單調性;
(Ⅱ)若函數f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M,N兩點.
(1)求k的取值范圍;
(2)請問是否存在實數k使得 (其中O為坐標原點),如果存在請求出k的值,并求|MN|;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關.
平均車速超過 | 平均車速不超過 | 合計 | |
男性駕駛員人數 | |||
女性駕駛員人數 | |||
合計 |
(2)以上述數據樣本來估計總體,現從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數為 ,若每次抽取的結果是相互獨立的,求 的分布列和數學期望.
參考公式與數據: ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.函數 的圖象與直線 可能有兩個交點;
B.函數 與函數 是同一函數;
C.對于 上的函數 ,若有 ,那么函數 在 內有零點;
D.對于指數函數 ( )與冪函數 ( ),總存在一個 ,當 時,就會有 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com