【題目】將圓的一組等分點分別涂上紅色或藍色從任意一點開始,按逆時針方向依次記錄個點的顏色,稱為該圓的一個階色序,當且僅當兩個階色序?qū)?yīng)位置上的顏色至少有一個不相同時,稱為不同的階色序若某國的任意兩個階色序均不相同,則稱該圓為階魅力圓3階魅力圓中最多可有的等分點個數(shù)為

A.4 B.6 C.8 D.10

【答案】C

【解析】

試題分析:因階色序中每個點的顏色有兩種選擇,故階色序共有種,一方面,個點可以構(gòu)成階色序,故階魅力圓中的等分點的個數(shù)不多于個;另一方面,若,則必須包含全部共階色序,不妨從開始按逆時針確定其它各點顏色,顯然符合條件.故階魅力圓中最多可有個等分點,故應(yīng)選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】總體由編號為00,01,02,…48,4950個個體組成,利用下面的隨機數(shù)表選取8個個體,選取方法是從隨機數(shù)表第6行的第9列和第10列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第8個個體的編號為( )

附:第6行至第9行的隨機數(shù)表

2635 7900 3370 9160 1620 3882 7757 4950

3211 4919 7306 4916 7677 8733 9974 6732

2748 6198 7164 4148 7086 2888 8519 1620

7477 0111 1630 2404 2979 7991 9683 5125

A. 16 B. 19 C. 20 D. 38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當時,求曲線處的切線方程;

)當時,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的空間幾何體中,平面平面,是邊長為2的等邊三角形,,平面所成的角,且點E平面上的射落在的平分線上.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)恒成立,求實數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】衡州市英才中學(xué)貫徹黨的教育方針,促進學(xué)生全面發(fā)展,積極組織開展了豐富多樣的社團活動,根據(jù)調(diào)查,英才中學(xué)在傳統(tǒng)民族文化的繼承方面開設(shè)了“泥塑”、“剪紙”、“曲藝”三個社團,三個社團參加的人數(shù)如下表所示:

社團

泥塑

剪紙

曲藝

人數(shù)

320

240

200

為調(diào)查社團開展情況,學(xué)校社團管理部采用分層抽樣的方法從中抽取一個容量為的樣本,已知從“剪紙”社團抽取的同學(xué)比從“泥塑”社團抽取的同學(xué)少2人。

(1)求三個社團分別抽取了多少同學(xué);

(2)若從“剪紙”社團抽取的同學(xué)中選出2人擔(dān)任該社團活動監(jiān)督的職務(wù),已知“剪紙”社團被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,的圖象在點處的切線的斜率為,且函數(shù)為偶函數(shù).若函數(shù)滿足下列條件:;對一切實數(shù),不等式恒成立.

1求函數(shù)的表達式;

2設(shè)函數(shù)的兩個極值點恰為的零點.當時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海關(guān)對同時從,三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.

地區(qū)

數(shù)量

50

150

100

1)求這6件樣品中來自,各地區(qū)商品的數(shù)量;

2)若在這6件樣品中隨機抽取2件送往甲機構(gòu)進行進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案