3.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則它的體積為(  )
A.48B.16C.32D.16$\sqrt{5}$

分析 根據(jù)三視圖畫(huà)出此幾何體:鑲嵌在正方體中的四棱錐,由正方體的位置關(guān)系判斷底面是矩形,做出四棱錐的高后,利用線面垂直的判定定理進(jìn)行證明,由等面積法求出四棱錐的高,利用椎體的體積公式求出答案.

解答 解:根據(jù)三視圖得出:該幾何體是鑲嵌在正方體中的四棱錐O-ABCD,
正方體的棱長(zhǎng)為4,O、A、D分別為棱的中點(diǎn),
∴OD=2$\sqrt{2}$,AB=DC=OC=2$\sqrt{5}$,
做OE⊥CD,垂足是E,
∵BC⊥平面ODC,∴BC⊥OE、BC⊥CD,則四邊形ABCD是矩形,
∵CD∩BC=C,∴OE⊥平面ABCD,
∵△ODC的面積S=$4×4-\frac{1}{2}×2×2-\frac{1}{2}×2×4×2$=6,
∴6=$\frac{1}{2}•CD•OE$=$\frac{1}{2}×2\sqrt{5}×OE$,得OE=$\frac{6}{\sqrt{5}}$,
∴此四棱錐O-ABCD的體積V=$\frac{1}{3}{S}_{矩形ABCD}•OE$=$\frac{1}{3}×4×2\sqrt{5}×\frac{6}{\sqrt{5}}$=16,
故選:B.

點(diǎn)評(píng) 本題考查三視圖求不規(guī)則幾何體的體積,以及等面積法的應(yīng)用,由三視圖正確復(fù)原幾何體、并放在對(duì)應(yīng)的正方體中是解題的關(guān)鍵,考查空間想象能力和數(shù)形結(jié)合思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)求證:cotα=tanα+2cot2α;
(2)請(qǐng)利用(1)的結(jié)論證明:cotα=tanα+2tan2α+4cot4α;
(3)請(qǐng)你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:
(4)化簡(jiǎn):tan5°+2tan10°+4tan20°+8tan50°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-$\frac{4}{3}$.
(1)求函數(shù)的解析式;
(2)若g(x)=f(x)-k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知方程x2-2(m+2)x+m+2=0有兩個(gè)不相等的實(shí)根,則m的取值范圍是(  )
A.m<-2或m>-1B.-2<m<0C.-2<m<-1D.m>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知三棱錐A-BCD中,AB⊥平面ACD,AC=AD=2,AB=4,CD=2$\sqrt{2}$,則三棱錐A-BCD外接球的表面積與內(nèi)切球表面積的比為24:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知點(diǎn)A(-3,5,2),則點(diǎn)A關(guān)于yOz面對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為( 。
A.(3,5,2)B.(3,-5,2)C.(3,-5,-2)D.(-3,-5,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知某正四面體的內(nèi)切球體積是1,則該正四面體的外接球的體積是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在三棱錐A-BCD中,△ABC與△BCD都是邊長(zhǎng)為6的正三角形,平面ABC⊥平面BCD,則該三棱錐的外接球的體積為( 。
A.5$\sqrt{15}$πB.60πC.60$\sqrt{15}$πD.20$\sqrt{15}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案