【題目】如圖,一個湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線型公路l,湖上有橋ABAB是圓O的直徑).規(guī)劃在公路l上選兩個點(diǎn)P、Q,并修建兩段直線型道路PB、QA.規(guī)劃要求:線段PB、QA上的所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.已知點(diǎn)A、B到直線l的距離分別為ACBDC、D為垂足),測得AB=10,AC=6,BD=12(單位:百米).

1)若道路PB與橋AB垂直,求道路PB的長;

2)在規(guī)劃要求下,PQ中能否有一個點(diǎn)選在D處?并說明理由;

3)對規(guī)劃要求下,若道路PBQA的長度均為d(單位:百米).求當(dāng)d最小時,P、Q兩點(diǎn)間的距離.

【答案】(1)15(百米);

(2)見解析;

(3)17+(百米).

【解析】

解:解法一:

1)過A,垂足為E.利用幾何關(guān)系即可求得道路PB的長;

2)分類討論PQ中能否有一個點(diǎn)選在D處即可.

3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時,P、Q兩點(diǎn)間的距離.

解法二:

1)建立空間直角坐標(biāo)系,分別確定點(diǎn)P和點(diǎn)B的坐標(biāo),然后利用兩點(diǎn)之間距離公式可得道路PB的長;

2)分類討論PQ中能否有一個點(diǎn)選在D處即可.

3)先討論點(diǎn)P的位置,然后再討論點(diǎn)Q的位置即可確定當(dāng)d最小時,PQ兩點(diǎn)間的距離.

解法一:

1)過A,垂足為E.

由已知條件得,四邊形ACDE為矩形,.

因為PBAB,

所以.

所以.

因此道路PB的長為15(百米).

2)①若PD處,由(1)可得E在圓上,則線段BE上的點(diǎn)(除B,E)到點(diǎn)O的距離均小于圓O的半徑,所以P選在D處不滿足規(guī)劃要求.

②若QD處,連結(jié)AD,由(1)知,

從而,所以∠BAD為銳角.

所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.

因此,Q選在D處也不滿足規(guī)劃要求.

綜上,PQ均不能選在D.

3)先討論點(diǎn)P的位置.

當(dāng)∠OBP<90°時,線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;

當(dāng)∠OBP≥90°時,對線段PB上任意一點(diǎn)F,OFOB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.

設(shè)l上一點(diǎn),且,由(1)知,,

此時;

當(dāng)∠OBP>90°時,在中,.

由上可知,d≥15.

再討論點(diǎn)Q的位置.

由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.當(dāng)QA=15時,.此時,線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.

綜上,當(dāng)PBAB,點(diǎn)Q位于點(diǎn)C右側(cè),且CQ=時,d最小,此時P,Q兩點(diǎn)間的距離PQ=PD+CD+CQ=17+.

因此,d最小時,P,Q兩點(diǎn)間的距離為17+(百米).

解法二:

1)如圖,過OOHl,垂足為H.

O為坐標(biāo)原點(diǎn),直線OHy軸,建立平面直角坐標(biāo)系.

因為BD=12,AC=6,所以OH=9,直線l的方程為y=9,點(diǎn)A,B的縱坐標(biāo)分別為3,3.

因為AB為圓O的直徑,AB=10,所以圓O的方程為x2+y2=25.

從而A4,3),B4,3),直線AB的斜率為.

因為PBAB,所以直線PB的斜率為,

直線PB的方程為.

所以P13,9),.

因此道路PB的長為15(百米).

2)①若PD處,取線段BD上一點(diǎn)E4,0),則EO=4<5,所以P選在D處不滿足規(guī)劃要求.

②若QD處,連結(jié)AD,由(1)知D49),又A4,3),

所以線段AD.

在線段AD上取點(diǎn)M3,),因為,

所以線段AD上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑.

因此Q選在D處也不滿足規(guī)劃要求.

綜上,PQ均不能選在D.

3)先討論點(diǎn)P的位置.

當(dāng)∠OBP<90°時,線段PB上存在點(diǎn)到點(diǎn)O的距離小于圓O的半徑,點(diǎn)P不符合規(guī)劃要求;

當(dāng)∠OBP≥90°時,對線段PB上任意一點(diǎn)F,OFOB,即線段PB上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑,點(diǎn)P符合規(guī)劃要求.

設(shè)l上一點(diǎn),且,由(1)知,,此時;

當(dāng)∠OBP>90°時,在中,.

由上可知,d≥15.

再討論點(diǎn)Q的位置.

由(2)知,要使得QA≥15,點(diǎn)Q只有位于點(diǎn)C的右側(cè),才能符合規(guī)劃要求.

當(dāng)QA=15時,設(shè)Qa,9),由,

a=,所以Q,9),此時,線段QA上所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.

綜上,當(dāng)P13,9),Q,9)時,d最小,此時P,Q兩點(diǎn)間的距離

.

因此,d最小時,P,Q兩點(diǎn)間的距離為(百米).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種質(zhì)地均勻的正四面體玩具的4個面上分別標(biāo)有數(shù)字0,1,23,將這個玩具拋擲次,記第次拋擲后玩具與桌面接觸的面上所標(biāo)的數(shù)字為,數(shù)列的前和為.記3的倍數(shù)的概率為

1)求,;

2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數(shù)

6

24

(Ⅰ)求 , 的值;

(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談.現(xiàn)再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數(shù)學(xué)期望;

(Ⅲ)某評估機(jī)構(gòu)以指標(biāo),其中表示的方差)來評估該校安全教育活動的成效.若,則認(rèn)定教育活動是有效的;否則認(rèn)定教育活動無效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的圓上運(yùn)動,PA⊥平面ABC,且PAACD,E分別是PC,PB的中點(diǎn).

1)求證:PC⊥平面ADE

2)若二面角CAEB60°,求直線AB與平面ADE所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個不在軸上的動點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線, 兩個不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園內(nèi)有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個半圓內(nèi)種植花草,其它區(qū)域種值苗木. 現(xiàn)決定在綠地區(qū)域內(nèi)修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價為每米2a元,弧形路為鵝卵石路面,其工程造價為每米3a元,修建的總造價為W元. 設(shè).

(1)求W關(guān)于的函數(shù)關(guān)系式;

(2)如何修建道路,可使修建的總造價最少?并求最少總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向有一條公路,一半徑為100的圓形廣場(圓心為)與此公路所在直線相切于點(diǎn),點(diǎn)為北半圓。ɑ)上的一點(diǎn),過點(diǎn)作直線的垂線,垂足為,計劃在內(nèi)(圖中陰影部分)進(jìn)行綠化,設(shè)的面積為(單位:),

1)設(shè),將表示為的函數(shù);

2)確定點(diǎn)的位置,使綠化面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時間x(小時)之間的若干組數(shù)據(jù),并由此得出yx之間的一個擬合函數(shù)y400.6x0.62x)(x[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:

1)求藥峰濃度與藥峰時間(精確到0.01小時),并指出血藥濃度隨時間的變化趨勢;

2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時間)(精確到0.01小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為,(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的 非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案