16.若7a=2,b=log73,求72a-3b

分析 化簡可得7b=3,從而利用冪運算求解.

解答 解:∵7a=2,b=log73,
∴72a=4,7b=3,
∴72a-3b=$\frac{{7}^{2a}}{({7}^)^{3}}$=$\frac{4}{27}$.

點評 本題考查了對數(shù)式與指數(shù)式的化簡運算及冪運算的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設α為平面,a、b為兩條不同的直線,則下列敘述正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a⊥α,a∥b,則b⊥α
C.若α∥β,a?α,b?β則a∥bD.若a∥α,a⊥b,則b⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在平面直角坐標系中,方程$\frac{|x+y|}{2}$+|x-y|=1所表示的曲線為(  )
A.三角形B.正方形
C.非正方形的長方形D.非正方形的菱形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命題:
①當k=-$\frac{1}{2}$時,函數(shù)f(x)在(0,$\frac{1}{2}}$)上單調遞增;
②當k≥0時,函數(shù)f(x)在(0,+∞)上有極大值;
③當-$\frac{1}{2}$<k<0時,函數(shù)f(x)在($\frac{1}{2}$,+∞)上單調遞減;
④當k<-$\frac{1}{2}$時,函數(shù)f(x)在(0,+∞)上有極大值f(${\frac{1}{2}}$),有極小值f(-k).
其中正確命題的序號是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知在直三棱柱ABC-A1B1C1中,∠BAC=120°,AB=AC=1,AA1=2,若棱AA1在正視圖的投影面α內,且AB與投影面α所成角為θ(30°≤θ≤60°),設正視圖的面積為m,側視圖的面積為n,當θ變化時,mn的最大值是( 。
A.2$\sqrt{3}$B.4C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.計算:$\underset{lim}{x→∞}(\frac{x}{1+x})^{x}$=$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設a=20.3,b=0.32,c=log${\;}_{\sqrt{2}}$2,將a,b,c按從小到大的順序用不等號連接為b<a<c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)的定義域為R,下列說法中請把正確的序號為(1)(3)
(1)若f(x)是偶函數(shù),則f(-2)=f(2)
(2)若f(-2)=f(2),則f(x)是偶函數(shù)
(3)f(-2)≠f(2),則f(x)不是偶函數(shù)
(4)若f(-2)=f(2),則f(x)不是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=2sin2x+2$\sqrt{3}$sinxcosx
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{2π}{3}]$上的取值范圍.

查看答案和解析>>

同步練習冊答案