如圖是多面體和它的三視圖.
(1)若點是線段上的一點,且,求證:;
(2)求二面角的余弦值.
(1)證明見解析;
(2)
解析試題分析:(1)利用已知的線面垂直關系建立空間直角坐標系,準確寫出相關點的坐標,從而將幾何證明轉化為向量運算.其中靈活建系是解題的關鍵.(2)證明線面垂直,需證線線垂直,只需要證明直線的方向向量垂直;(3)把向量夾角的余弦值轉化為兩平面法向量夾角的余弦值;(4)空間向量將空間位置關系轉化為向量運算,應用的核心是要充分認識形體特征,建立恰當?shù)淖鴺讼,實施幾何問題代數(shù)化.同時注意兩點:一是正確寫出點、向量的坐標,準確運算;二是空間位置關系中判定定理與性質定理條件要完備.
試題解析:解:(1)由題意知AA1,AB,AC兩兩垂直,建立如圖所示的空間直角坐標系,則A(0,0,0),A1(0,0,2),B(-2,0,0),C(0,-2,0),C1(-1,-1,2),則=(-1,1,2),=(-1,-1,0),=(0,-2,-2).(1分)
設E(x,y,z),則=(x,y+2,z),
=(-1-x,-1-y,2-z).(3分)
=2,得E(
=
設平面C1A1C的法向量為m=(x,y,z),則由,
得,取x=1,則y=-1,z=1.故m=(1,-1,1),
=,BE⊥平面A1CC1.(6分)
(2)由(1)知,平面C1A1C的法向量為m=(1,-1,1)
而平面A1CA的一個法向量為n=(1,0,0),則cos〈m,n〉===,故二面角的余弦值.(12分)
考點:利用空間向量證明垂直和夾角問題.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面為一直角梯形,側面PAD是等邊三角形,其中,,平面底面,是的中點.
(1)求證://平面;
(2)求證:;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中點O為球心、BD為直徑的球面交PD于點M.
(1)求證:平面ABM平面PCD;
(2)求三棱錐M-ABD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在體積為的正三棱錐中,長為,為棱的中點,求
(1)異面直線與所成角的大。ńY果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com