2.已知函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),若對(duì)任意實(shí)數(shù)x有f(x)>f′(x),且y=f(x)-1的圖象過(guò)原點(diǎn),則不等式$\frac{f(x)}{{e}^{x}}$<1的解集為(0,+∞).

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$,研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解

解答 解:設(shè)g(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f′(x)<f(x),
∴f′(x)-f(x)<0
∴g′(x)<0,
∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
∵y=f(x)-1的圖象過(guò)原點(diǎn),
∴f(0)=1
又∵g(0)=$\frac{f(0)}{{e}^{0}}$=1
∴g(x)<g(0)
∴x>0
故答案為(0,+∞)

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性500人,其中有50人患色盲,調(diào)查的500個(gè)女性中10人患色盲,
(1)根據(jù)以上的數(shù)據(jù)建立一個(gè)2*2的列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“性別與患色盲有關(guān)系”?說(shuō)明你的理由.(注:P(K2≥10.828)=0.001)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若正數(shù)m,n滿足m+n+3=mn,不等式(m+n)x2+2x+mn-13≥0恒成立,則實(shí)數(shù)x的取值范圍是( 。
A.$({-∞,-1}]∪[{\frac{2}{3},+∞})$B.$({-∞,-1}]∪[{\frac{1}{2},+∞})$C.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{3},+∞})$D.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{6},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,三內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且$\frac{c-b}{{\sqrt{2}c-a}}=\frac{sinA}{sinB+sinC}$
(I)求角B的大小,
(Ⅱ)設(shè)$\overrightarrow{m}=(sinA+cosA,1),\overrightarrow{n}=(2,cos(\frac{π}{2}-2A))$,求$\overrightarrow{m}•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知命題p:“m=-1”,命題q:“直線x-y=0與直線x+m2y=0互相垂直”,則命題p是命題q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow$=(2,x),$\overrightarrow$在$\overrightarrow{a}$方向上的投影是-$\sqrt{2}$,則實(shí)數(shù)x=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在某項(xiàng)測(cè)試中,測(cè)量結(jié)果X服從正態(tài)分布N(1,σ2),若P(X<0)=0.2,則P(0<X<2)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在四邊形ABCD中(如圖①),AB∥CD,AB⊥BC,G為AD上一點(diǎn),且AB=AG=1,GD=CD=2,M為GC的中點(diǎn),點(diǎn)P為邊BC上的點(diǎn),且滿足BP=2PC.現(xiàn)沿GC折疊使平面GCD⊥平面ABCG(如圖②).
(1)求證:平面BGD⊥平面GCD:
(2)求直線PM與平面BGD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)橢圓E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且點(diǎn)M($\frac{\sqrt{2}}{2}$,-1)在橢圓上.
(1)求橢圓E的方程;
(2)直線經(jīng)過(guò)點(diǎn)M(-2,0)與橢圓E交于A,B兩點(diǎn),O為原點(diǎn),試求△AOB面積最大值及此時(shí)的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案