已知函數(shù)y=f(x)定義域為(-π,π),且函數(shù)y=f(x+1)的圖象關于直線x=-1對稱,當x∈(0,π)時,f(x)=-f′(
π
2
)sinx-πl(wèi)nx
,(其中f′(x)是f(x)的導函數(shù)),若a=f(30.3),b=f(logπ3),c=f(log3
1
9
)
,則a,b,c的大小關系是( 。
分析:由題意可知函數(shù)為偶函數(shù),把給出的函數(shù)解析式求導后求出f(
π
2
)
的值,代入導函數(shù)解析式判斷導函數(shù)的符號,得到原函數(shù)的單調(diào)性,由單調(diào)性得答案.
解答:解:由x∈(0,π)時f(x)=-f(
π
2
)cosx-
π
x

所以f(
π
2
)=-f(
π
2
)cos
π
2
-
π
π
2
=-2

f(x)=2cosx-
π
x

所以當x∈(0,π)時,f′(x)<0.
則f(x)在x∈(0,π)上為 減函數(shù).
因為函數(shù)y=f(x+1)的圖象關于直線x=-1對稱,則函數(shù)y=f(x)為偶函數(shù),
因為log3
1
9
=-2
,而1<30.3<2,0<logπ3<1.
所以f(logπ3)>f(30.3)>f(2)=f(-2)=f(log3
1
9
)

所以b>a>c.
故選B.
點評:本題考查了函數(shù)的單調(diào)性與導函數(shù)之間的關系,考查了函數(shù)的奇偶性的性質(zhì),解答的關鍵在于判斷函數(shù)在(0,π)上的單調(diào)性,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關于x軸的對稱圖形一定過點( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案