10.如果f(x+y)=f(x)•f(y)且f(1)=1,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$等于(  )
A.1005B.1006C.2008D.2010

分析 令y=1,得f(x+1)=f(x)•f(1)=f(x),即$\frac{f(x+1)}{f(x)}$=1,即可求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$的值.

解答 解:令y=1,則f(x+1)=f(x)•f(1)=f(x),
即$\frac{f(x+1)}{f(x)}$=1,
則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$=1+1+…+1=1006.
故選:B.

點評 本題主要考查函數(shù)值的計算,根據(jù)抽象函數(shù)的關系,利用賦值法得到$\frac{f(x+1)}{f(x)}$=1是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.在平面直角坐標系中,點M在曲線C:y=x3-2x上,已知曲線C在點M處的切線的斜率為1,則點M的坐標為(1,-1)或(-1,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.一個數(shù)列{an}的前n項為$\frac{3}{5}$,$\frac{1}{2}$,$\frac{5}{11}$,$\frac{3}{7}$,$\frac{7}{17}$,…,則猜想它的一個通項公式為an=$\frac{n+2}{3n+2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若x>1,則x+1+$\frac{4}{x-1}$的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設f(θ)=$\frac{2co{s}^{3}θ+si{n}^{2}(2π-θ)+cos(-θ)-3}{2+2co{s}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在直角坐標系xOy中,F(xiàn)為拋物線C:y2=2px(p>0)的焦點,M為拋物線C上一點,若|MF|=2p,S△MOF=4$\sqrt{3}$,則p的值為(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為(  )
A.8cm3B.4cm3C.$\frac{8}{3}$cm3D.2cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體切削得到,求切削掉部分的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{π}{4}$,cosB=$\frac{4}{5}$.
(Ⅰ)求cosC的值;
(Ⅱ)若c=$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

同步練習冊答案