已知在△ABC中,tanA=-
5
12
,則sinA的值為( 。
分析:在三角形中,sinA一定大于零,利用同角三角函數(shù)基本關(guān)系式通過(guò)解方程即可解得sinA的值
解答:解:∵在△ABC中,A∈(0,π),∵tanA=-
5
12
<0
,∴A∈(
π
2
,π)
tanA=-
5
12
,∴
sin2A
cos2A
=
25
144
,∴
sin2A
1-sin2A
=
25
144

∴sin2A=
25
169

∴sinA=
5
13

故選B.
點(diǎn)評(píng):本題考察了同角三角函數(shù)基本關(guān)系式及其應(yīng)用,已知角的正切值求角的其他三角值的方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0),點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,3),求以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點(diǎn)P,從點(diǎn)P向(Ⅱ)中圓引一條切線,切點(diǎn)為Q.問(wèn)是否存在一個(gè)定點(diǎn)M,恒有PM=PQ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市啟東中學(xué)高三數(shù)學(xué)考前輔導(dǎo)材料(2)(解析版) 題型:解答題

已知在△ABC中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0),點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,3),求以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點(diǎn)P,從點(diǎn)P向(Ⅱ)中圓引一條切線,切點(diǎn)為Q.問(wèn)是否存在一個(gè)定點(diǎn)M,恒有PM=PQ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省南通市高三考前輔導(dǎo)數(shù)學(xué)試卷(解析版) 題型:解答題

已知在△ABC中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0),點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,3),求以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點(diǎn)P,從點(diǎn)P向(Ⅱ)中圓引一條切線,切點(diǎn)為Q.問(wèn)是否存在一個(gè)定點(diǎn)M,恒有PM=PQ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知在△ABC中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0),點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,3),求以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點(diǎn)P,從點(diǎn)P向(Ⅱ)中圓引一條切線,切點(diǎn)為Q.問(wèn)是否存在一個(gè)定點(diǎn)M,恒有PM=PQ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)最后沖刺必讀題解析30講(22)(解析版) 題型:解答題

已知在△ABC中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0),點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C的坐標(biāo)為(2,3),求以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圓的方程;
(Ⅲ)若在給定直線y=x+t上任取一點(diǎn)P,從點(diǎn)P向(Ⅱ)中圓引一條切線,切點(diǎn)為Q.問(wèn)是否存在一個(gè)定點(diǎn)M,恒有PM=PQ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案