若圓(x-3)2+(y+5)2=r2有且只有兩個(gè)點(diǎn)到直線4x-3y=2的距離等于1,則半徑r的范圍是( 。
A、(4,6)
B、(4,6]
C、[4,6)
D、[4,6]
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:先利用點(diǎn)到直線的距離公式求出圓心到直線的距離,由題意得|5-r|<1,解此不等式求得半徑r的取值范圍.
解答: 解:由圓的標(biāo)準(zhǔn)方程得圓心坐標(biāo)(3,-5),
則圓心到直線4x-3y=2的距離等于
|4×3-3×(-5)-2|
32+42
=
25
5
=5,
若圓(x-3)2+(y+5)2=r2有且只有兩個(gè)點(diǎn)到直線4x-3y=2的距離等于1,
則滿足|5-r|<1,
解得 4<r<6,
故選 A.
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x|x-a|.
(1)當(dāng)a=2,f(x)在[0,1]上最大值.
(2)若不等式f(x)<2對(duì)x∈[0,1]恒成立,求a的范圍;
(3)設(shè)a>0,函數(shù)f(x)在(m,n)上既有最大值,又有最小值,求m,n的取值范圍(用a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,an=2n-2n,求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式是an=-n2+λn(其中n∈N*)是一個(gè)單調(diào)遞減數(shù)列,則常λ的取值范圍 ( 。
A、(-∞,1)
B、(-∞,2)
C、(-∞,0)
D、(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若∠A=30°,∠B=45°,BC=
2
,則AC等于( 。
A、
2
3
3
B、2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2a-c)cosB=bcosC,則角B等于 ( 。
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=2,AC=4,線段CB的垂直平分線交AC于點(diǎn)D,DA-DB=1,求BC的長(zhǎng)及cos∠ACB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,0),
b
=(2,3),則(2
a
-
b
)•(
a
+
b
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.對(duì)于二次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),有如下真命題:任何一個(gè)二次函數(shù)都有位移的“拐點(diǎn)”,且該“拐點(diǎn)”就是f(x)的對(duì)稱中心,給定函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請(qǐng)你根據(jù)上面結(jié)論,計(jì)算f(
1
2016
)+f(
2
2016
)+…+f(
2015
2016
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案