3.log4[log4(log381)]=0.

分析 由log381=4,log44=1,log41=0,能求出結(jié)果.

解答 解:log4[log4(log381)]
=log4(log44)
=log41
=0.
故答案為:0.

點(diǎn)評 本題考查對數(shù)函數(shù)化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)性質(zhì)及運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+ax2+bx+1,僅當(dāng)x=-1,x=1時取得極值;
(1)求a、b的值;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A1,A2,A3為平面上三個不共線的定點(diǎn),平面上點(diǎn)M滿足$\overrightarrow{{A}_{1}M}$=λ($\overrightarrow{{A}_{1}{A}_{2}}$+$\overrightarrow{{A}_{1}{A}_{3}}$)(λ是實數(shù)),且$\overrightarrow{M{A}_{1}}$+$\overrightarrow{M{A}_{2}}$+$\overrightarrow{M{A}_{3}}$是單位向量,則這樣的點(diǎn)M有( 。
A.0個B.1個C.2個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.觀察下面的算式:
${1^2}=\frac{1}{6}×1×2×3$,
${1^2}+{2^2}=\frac{1}{6}×2×3×5$,
${1^2}+{2^2}+{3^2}=\frac{1}{6}×3×4×7$,
則12+22+…+n2=$\frac{1}{6}n({n+1})({2n+1})$(其中n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=x-alnx,g(x)=-\frac{1+a}{x}(a∈R)$.
(Ⅰ)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式f(x)≤g(x)在區(qū)間[1,e](e=2.71828…)的解集為非空集合,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面有5個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②若α為第二象限角,則$\frac{α}{3}$在一、三、四象限;
③在同一坐標(biāo)系中,函數(shù)y=sin x的圖象和函數(shù)y=x的圖象有3個公共點(diǎn).
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù).
其中,真命題的編號是①④.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若拋物線x2=2py(p>0)的焦點(diǎn)與雙曲線$\frac{y^2}{3}-{x^2}=1$的焦點(diǎn)重合,則p的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC,O為三角形內(nèi)一點(diǎn)
(1)已知$\overrightarrow{OA}$$⊥\overrightarrow{BC}$,$\overrightarrow{OB}$⊥$\overrightarrow{AC}$,求證$\overrightarrow{OC}$⊥$\overrightarrow{AB}$;
(2)若△ABC的三條邊a,b,c上三條高分別為ha=$\frac{1}{5}$,hb=$\frac{1}{11}$,hc=$\frac{1}{13}$,求三角形最大角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,該幾何體外接球的體積為( 。
A.288πB.72πC.36πD.18π

查看答案和解析>>

同步練習(xí)冊答案