19.?dāng)?shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前64項(xiàng)和為2080.

分析 由已知數(shù)列遞推式可得${a}_{n+2}+{a}_{n}=(-1)^{n}(2n-1)+2n+1$,同理可得${a}_{n+3}+{a}_{n+1}=-(-1)^{n}(2n+1)+2n+3$,構(gòu)造數(shù)列bn=a4n+a4n-1+a4n-2+a4n-3,可知數(shù)列bn為等差數(shù)列,把{an}的前64項(xiàng)和轉(zhuǎn)化為數(shù)列{bn}的前16項(xiàng)和得答案.

解答 解:由an+1+(-1)nan=2n-1,得:
${a}_{n+2}=-(-1)^{n+1}{a}_{n+1}+2n+1$
=-(-1)n+1[-(-1)nan+2n-1]+2n+1
=$-{a}_{n}+(-1)^{n}(2n-1)+2n+1$,
∴${a}_{n+2}+{a}_{n}=(-1)^{n}(2n-1)+2n+1$,
同理:${a}_{n+3}+{a}_{n+1}=-(-1)^{n}(2n+1)+2n+3$,
于是${a}_{n+3}+{a}_{n+2}+{a}_{n+1}+{a}_{n}=4n+4-2(-1)^{n}$,
令bn=a4n+a4n-1+a4n-2+a4n-3
則bn+1=bn+16,b1=10,
于是,bn=16n-6,
前16項(xiàng)和為$\frac{(10+16×16-6)×16}{2}=2080$.
故答案為:2080.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,訓(xùn)練了利用構(gòu)造等差數(shù)列求數(shù)列的前n項(xiàng)和,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,若a=b=$\sqrt{3}$,∠C=$\frac{5π}{6}$,則c=$\frac{3\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=|x2-1|+x2+kx.若對(duì)于區(qū)間(0,+∞)內(nèi)的任意x,總有f(x)≥0成立,求實(shí)數(shù)k的取值范圍為( 。
A.[0,+∞)B.[-2,+∞)C.(-2,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.“因?yàn)閷?duì)數(shù)函數(shù)y=logax是增函數(shù),而y=log${\;}_{\frac{1}{2}}$x是對(duì)數(shù)函數(shù),所以y=log${\;}_{\frac{1}{2}}$x是增函數(shù)”.有關(guān)這個(gè)“三段論”的推理形式和推理結(jié)論正確的說(shuō)法是( 。
A.形式正確,結(jié)論正確B.形式錯(cuò)誤,結(jié)論錯(cuò)誤
C.形式正確,結(jié)論錯(cuò)誤D.形式錯(cuò)誤,結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.有兩個(gè)等差數(shù)列2,6,10,…,190及2,8,14,…,200,將這兩個(gè)等差數(shù)列的公共項(xiàng)按從小到大的順序組成一個(gè)新數(shù)列{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的所有項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(3-a)x-4,x≤6}\\{{a}^{x-6},x>6}\end{array}\right.$,設(shè)an=f(n),n∈N*,若{an}是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若α滿足$sin(α-\frac{π}{6})=\frac{1}{3}$,則$cos(\frac{2π}{3}-α)$的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知角α的終邊經(jīng)過(guò)點(diǎn)P($\frac{4}{5}$,-$\frac{3}{5}$).
(1)求cosα的值;
(2)求$\frac{sin(\frac{π}{2}-α)}{sin(α+π)}$•$\frac{tan(α-π)}{cos(3π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{4-|x|}$+lg$\frac{{{x^2}-5x+6}}{x-3}$的定義域?yàn)椋?,3)∪(3,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案