已知函數(shù)f(x)=x+
ax
,且f(1)=2.
(1)求a的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論;
(3)此函數(shù)在區(qū)間(1,+∞)上是增函數(shù)還是減函數(shù)?并用定義證明你的結(jié)論.
分析:(1)由題意可得 1+
a
1
-2,喲此解得a的值.
(2)由(1)可得fx)=x+
1
x
,求得它的定義域關(guān)于原點對稱.再由f(-x)=-f(x),可得函數(shù)f(x)為奇函數(shù).
(3)此函數(shù)在區(qū)間(1,+∞)上是增函數(shù),利用函數(shù)的單調(diào)性的定義證明函數(shù)在區(qū)間(1,+∞)上是增函數(shù).
解答:解:(1)由題意可得 1+
a
1
-2,解得a=1.
(2)由(1)可得fx)=x+
1
x
,它的定義域為(-∞,0)∪(0,+∞),關(guān)于原點對稱.
再由f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x),可得函數(shù)f(x)為奇函數(shù).
(3)此函數(shù)在區(qū)間(1,+∞)上是增函數(shù).
證明:設(shè)x2>x1>1,可得f(x2)-f(x1)=(x2+
1
x2
)-(x1+
1
x1
)=x2-x1+
x1-x2
x1•x2
=(x2-x1)(1-
1
x1•x2
).
由題設(shè)可得x2-x1>0,
1
x1•x2
<1,故 1-
1
x1•x2
>0,∴f (x2)-f(x1)>0,即 f(x2)>f(x1),
故函數(shù)在區(qū)間(1,+∞)上是增函數(shù).
點評:本題主要考查函數(shù)的奇偶性的判斷方法,利用函數(shù)的單調(diào)性的定義證明函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案