若橢圓
x2
a2
+
y2
b2
=1的一個焦點和短軸的兩端點構成一個正三角形,則該橢圓的離心率為(  )
A、
1
2
B、
3
2
C、
2
2
D、
2
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)橢圓的短軸的兩個端點與橢圓的一個焦點構成正三角形,得到a,b,c的關系,又根據(jù)橢圓的基本性質(zhì)可知a2=b2+c2,把可用b表示出c,然后根據(jù)離心率e=
c
a
,分別把a與c的式子代入,約分后即可得到值.
解答: 解:由題意,∵橢圓的短軸的兩個端點與橢圓的一個焦點構成正三角形
3
b=c,3b2=c2
∵a2=b2+c2=
4
3
c2,
∴e=
c
a
=
3
4
=
3
2

故選:B.
點評:此題考查學生掌握橢圓的簡單性質(zhì),考查了數(shù)形結合的數(shù)學思想,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的奇數(shù)項成等差數(shù)列,偶數(shù)項成等比數(shù)列,公差與公比均為2,并且a2+a4=a1+a5,a4+a7=a6+a3.則使得am•am+1•am+2=am+am+1+am+2成立的所有正整數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)函數(shù)y=f(x)是否可能在R上是單調(diào)函數(shù)?若可能,求出實數(shù)a的取值范圍.
(2)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)上遞增,在區(qū)間(1,+∞)上遞減,求出實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)g(x)=3x,h(x)=9x
(1)解方程x+log3[2g(x)-8]=log3[h(x)+9];
(2)令p(x)=
g(x)
g(x)+
3
,計算:p(
1
2014
)+p(
2
2014
)+…+p(
2013
2014
);
(3)若f(x)=
g(x+1)+a
g(x)+b
=
3x+1+a
3x+b
是奇函數(shù),當x≥1時,滿足f[h(x)-1]+f[2kg(x)]>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時f(x)=|x|,則函數(shù)f(x)的圖象與函數(shù)y=log2|x|的圖象的交點的個數(shù)是( 。
A、2B、3C、4D、多于4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求和:-2+22-23+24-25+…+2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校組織同學們參加紅色七日游---海上夏令營活動,如圖,海中小島A周圍20海里內(nèi)有暗礁,夏令營的船只船向正南航行,在B處測得小島A在船的南偏東30°,船行30海里后,在C處測得小島A在船的南偏東45°,如果此船不改變航向,繼續(xù)向南航行,有無觸礁的危險?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠ABC=90°,SA⊥平面ABC,過點A向SC和SB引垂線,垂足分別是P、Q,求證:
(1)AQ⊥平面SBC;
(2)PQ⊥SC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的正方形,側棱PD=a,PA=PC=
2
a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求證:∠PCD為二面角P-BC-D的平面角.

查看答案和解析>>

同步練習冊答案