7.如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.
(Ⅰ)求證:AC•BC=AD•AE;
(Ⅱ)過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)F,若AF=3,CF=9,求AC的長.

分析 (I)如圖所示,連接BE.由于AE是⊙O的直徑,可得∠ABE=90°.利用∠E=∠ACB.進(jìn)而得到△ABE∽△ADC,即可得到.
(II)利用切割線定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得$\frac{AF}{FC}$=$\frac{AC}{BC}$,即可得出.

解答 (I)證明:如圖所示,連接BE
∵AE是⊙O的直徑,∴∠ABE=90°.
又∠E=∠ACB.
∵AD⊥BC,∠ADC=90°.
∴△ABE∽△ADC,∴$\frac{AB}{AD}=\frac{AE}{AC}$,∴AB•AC=AD•AE.
又AB=BC,∴BC•AC=AD•AE.
(II)解:∵CF是⊙O的切線,∴CF2=AF•BF,
∵AF=3,CF=9,∴92=3BF,解得BF=27.
∴AB=BF-AF=24.
∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,
∴$\frac{AF}{FC}$=$\frac{AC}{BC}$,∴AC=$\frac{AF•BC}{CF}$=8.

點(diǎn)評 本題考查了圓的性質(zhì)、三角形相似、切割線定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若復(fù)數(shù)z1、z2滿足z1z2+2i(z1-z2)+4=0,且|z1|≠2,則|z2-4i|=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知動點(diǎn)M(x,y,z)到xOy平面的距離與點(diǎn)M到點(diǎn)(1,-1,2)的距離相等,求點(diǎn)M軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C的中心在原點(diǎn),對稱軸為坐標(biāo)軸,過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),($\sqrt{3}$,$\frac{1}{2}$).
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)斜率為k的直線l交橢圓于A,B兩點(diǎn),若$\overrightarrow{OA}$$•\overrightarrow{OB}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程lg$\frac{2}{x}$=lg(m-8x)的解集為∅,則實(shí)數(shù)m的取值范圍是m<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a>0且a≠1,函數(shù)f(x)=loga(x+1)在區(qū)間(-1,+∞)上遞減,求證:對于任意實(shí)數(shù)x1>0,x2>0,恒有$\frac{1}{2}$[f(x1-1)+f(x2-1)]≥f($\frac{{x}_{1}{+x}_{2}-2}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知M=$(\begin{array}{l}{2}&{0}\\{0}&{2}\end{array})$,a=$(\begin{array}{l}{3}\\{1}\end{array})$試計(jì)算M10a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知圓M:(x-1)2+y2=1,設(shè)A(0,t),B(0,t+6),(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,則△ABC面積的最大值為(  )
A.$\frac{15}{2}$B.$\frac{29}{4}$C.7D.$\frac{27}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值為-1,求實(shí)數(shù)m的值;
(Ⅱ)若f(x)的兩個零點(diǎn)為x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e為自然對數(shù)的底數(shù),f′(x)是f(x)的導(dǎo)函數(shù))

查看答案和解析>>

同步練習(xí)冊答案