精英家教網(wǎng)如圖,在矩形ABCD中,AB=2BC=2a,E為AB上一點,將B點沿線段EC折起至點P,連接PA、PC、PD,取PD的中點F,若有AF∥平面PEC.試確定E點位置.
分析:取PC的中點M,連接MF,EM,若使AF∥平面PEC,根據(jù)線面平行的性質(zhì)定理可知只需使EM∥AF,即使四邊形EMFA為平行四邊形,從而確定E的位置關(guān)系.
解答:解:取PC的中點M,連接MF,EM
根據(jù)點F為PD的中點,可知FM∥CD∥AE
若使AF∥平面PEC,則需使EM∥AF,即使四邊形EMFA為平行四邊形
從而AE=MF=
1
2
CD=
1
2
AB
E是AB的中點.
點評:本題主要考查了直線與平面平行的性質(zhì),應(yīng)熟練記憶直線與平面平行的性質(zhì)定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=2BC,P,Q分別為線段AB,CD的中點,EP⊥平面ABCD.
(1) 求證:AQ∥平面CEP;
(2) 求證:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點,現(xiàn)將△AED沿DE折起,使點A到點P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點.
(1)求證:BM∥平面PDE;
(2)線段BC上是否存在一點N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=3
3
,BC=3,沿對角線BD將BCD折起,使點C移到點C′,且C′在平面ABD的射影O恰好在AB上
(1)求證:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個三等分點,AC,DF相交于點G,建立適當?shù)钠矫嬷苯亲鴺讼担?br />(1)若動點M到D點距離等于它到C點距離的兩倍,求動點M的軌跡圍成區(qū)域的面積;
(2)證明:E G⊥D F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=
12
BC,E為AD的中點,將△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求證:CE⊥AB;
(2)在線段BC上找一點F,使DF∥平面ABE.

查看答案和解析>>

同步練習(xí)冊答案