4.對于實數(shù)a,b,c,有以下命題:
①若a>b,則ac<bc;
②若ac2>bc2,則a>b;
③若a<b<0,則a2>ab>b2;
④若$a>b,\frac{1}{a}>\frac{1}$,則a>0,b<0.
其中真命題的個數(shù)是( 。
A.2B.3C.4D.5

分析 利用反例判斷前2個命題的真假,利用不等式的性質(zhì)說明后2個命題的真假即可.

解答 解:①若a>b,則ac<bc;當(dāng)c>0時不成立;
②若ac2>bc2,則a>b;不等式成立;
③若a<b<0,
可得a2>ab,ab>b2;所以a2>ab>b2;原命題是真命題;
④若$a>b,\frac{1}{a}>\frac{1}$,則a>0,b<0.顯然成立,因為a,b同號時,$a>b,\frac{1}{a}>\frac{1}$,不成立;原命題是真命題.
故選:B.

點評 本題考查命題的真假的判斷與應(yīng)用,考查計算能力以及不等式的基本性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?dāng)S3枚均勻硬幣一次,求正面?zhèn)數(shù)與反面?zhèn)數(shù)之差X的分布列,并求其均值和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$y=2{sin^2}({x+\frac{π}{6}})$的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且s4是sn的最大值.
(I)求{an}的通項公式;
(II)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知不等式$1+\frac{1}{4}<\frac{3}{2},1+\frac{1}{4}+\frac{1}{9}<\frac{5}{3},1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}<\frac{7}{4},…$,照此規(guī)律,總結(jié)出第n-1個不等式為$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}<\frac{2n-1}{n}(n≥2,n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x>0,y>0,求證:$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動點,求PQ中點M到直線C3:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l為曲線y=x2+x-2在點(1,0)處的切線,m為該曲線的另一條切線,且l⊥m
(1)求直線m的方程
 (2)求直線l、m和x軸所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=-x3+2x2-x,則過點A(1,9)可以做曲線y=f(x)的幾條切線(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案