17.我國古代的天文學和數(shù)學著作《周髀算經(jīng)》中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(guǐ)長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長的變化量相同,周而復始.若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長是( 。
A.五寸B.二尺五寸C.三尺五寸D.四尺五寸

分析 設(shè)晷影長為等差數(shù)列{an},公差為d,a1=135,a13=15,利用等差數(shù)列的通項公式即可得出.

解答 解:設(shè)晷影長為等差數(shù)列{an},公差為d,a1=135,a13=15,
則135+12d=15,解得d=-10.
∴a14=135-10×13=5
∴《易經(jīng)》中所記錄的驚蟄的晷影長是5寸.
故選:A.

點評 本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.設(shè)$\overrightarrow a$,$\overrightarrow b$是兩個向量,則“$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$”是“$\overrightarrow a•\overrightarrow b>0$”的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,已知四邊形ABCD為直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD為底邊的等腰直角三角形,且PA⊥CD.
(1)證明:PC⊥平面PAD;
(2)求直線AB與平面PBC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.$\frac{3+i}{3-i}$=(  )
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.$\frac{1}{2}$-$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某校為了解高一學生周末的“閱讀時間”,從高一年級中隨機調(diào)查了100名學生進行調(diào)查,獲得了每人的周末“閱讀時間”(單位:小時),按圖[0.0.5),[0.5,1),…,[4,4.5]分9組,制成樣本的頻率分布直方圖如圖所示.
(Ⅰ)求圖中a的值;
(Ⅱ)估計該校高一學生周末“閱讀時間”的中位數(shù);
(Ⅲ)用樣本頻率代替概率,現(xiàn)從全校高一年級隨機抽取20名學生,其中k名學生“閱讀時間”在[1,2.5]小時內(nèi)的概率為P(X=k),其中k=0,1,2,…20.當P(X=k)取最大時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知△ABC中,D為邊AC上一點,BC=2$\sqrt{2}$,∠DBC=45°.
(Ⅰ)若CD=2$\sqrt{5}$,求△BCD的面積;
(Ⅱ)若角C為銳角,AB=6$\sqrt{2}$,sinA=$\frac{\sqrt{10}}{10}$,求CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)復數(shù)z1,z2在復平面內(nèi)對應的點關(guān)于實軸對稱,若${z_1}=\frac{1+3i}{1-i}$,則z1+z2等于( 。
A.4iB.-4iC.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$,其中|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E為PA的中點,∠BAD=60°.
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求三棱錐P-EDC的體積.

查看答案和解析>>

同步練習冊答案