6.設集合$A=\left\{{x|{{log}_2}x<0}\right\},B=\left\{{m|{m^2}-2m<0}\right\}$,則A∪B=( 。
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

分析 容易用區(qū)間分別表示集合A,B,然后進行并集的運算即可.

解答 解:A=(0,1),B=(0,2);
∴A∪B=(0,2).
故選C.

點評 考查描述法、區(qū)間表示集合的概念,對數(shù)函數(shù)的單調性,以及并集的運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥CD,CD⊥AC,過CD的平面分別與PA,PB交于點E,F(xiàn).
(1)求證:CD⊥平面PAC;
(2)求證:AB∥EF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.復數(shù)($\frac{1-ai}{a+i}$)2017=( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=$\sqrt{2}$
(1)求證:DM⊥平面ABC;
(2)求二面角C-BM-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設x>0,集合$M=\left\{{{x^2},{{log}_4}x}\right\},N=\left\{{{2^x},a}\right\}$,若M∩N={1},則M∪N=( 。
A.{0,1,2,4}B.{0,1,2}C.{1,4}D.{0,1,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在長方體ABCD-A1B1C1D1中,AB=4,AD=2,AA1=2,點E在棱AB上移動.
(1)當AE=1時,求證:直線D1E⊥平面A1DC1;
(2)在(1)的條件下,求${V_{{C_1}-{A_1}DE}}:{V_{{C_1}-{A_1}{D_1}D}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(x-1,3),$\overrightarrow$=(1,y),其中x,y都為正實數(shù),若$\overrightarrow{a}⊥\overrightarrow$,則$\frac{1}{x}+\frac{1}{3y}$的最小值為( 。
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=(1-cos2x)cos2x,x∈R,設f(x)的最大值是A,最小正周期為T,則f(AT)的值等于( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在平面直角坐標平面內,已知A(0,5),B(-1,3),C(3,t).
(1)若t=1,求證:△ABC為直角三角形;
(2)求實數(shù)t的值,使$|{\overrightarrow{AB}+\overrightarrow{AC}}|$最;
(3)若存在實數(shù)λ,使$\overrightarrow{AB}=λ•\overrightarrow{AC}$,求實數(shù)λ、t的值.

查看答案和解析>>

同步練習冊答案