2.命題“?x>0,x2-x≤0”的否定是?x>0,x2-x>0.

分析 根據(jù)全稱命題的否定是特稱命題進行求解即可.

解答 解:全稱命題的否定是特稱命題,
則命題的否定是:?x>0,x2-x>0,
故答案為:?x>0,x2-x>0

點評 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a+2b=2,則4a+16b的最小值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.運行如圖所示的程序框圖,將輸出的a依次記作a1,a2,…,an,輸出的b依次記作b1,b2,…,bn,輸出的S依次記作S1,S2,…Sn(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求$\frac{{{b_{n+1}}}}{{{a_{n+1}}}}$-$\frac{{1+{b_n}}}{a_n}$(n∈N*,n≤2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)全集U={-2,-1,0,1,2},集合A={0,1,2},則∁UA為(  )
A.B.{-1,1,2}C.{-2,-1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的通項公式為an=-2n+p,數(shù)列{bn}的通項公式為bn=2n-4,設(shè)cn=$\left\{{\begin{array}{l}{a_n}&{{a_n}≥{b_n}}\\{{b_n}}&{{a_n}<{b_n}}\end{array}}$,若在數(shù)列{cn}中c6<cn(n∈N*,n≠6),則p的取值范圍(  )
A.(11,25)B.(12,22)C.(12,17)D.(14,20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正實數(shù)a,b滿足a+b=4,則log2a+log2b的最大值是(  )
A.18B.2C.2$\sqrt{3}$D.2$\root{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,A、B、C的對邊分別為a、b、c,且bcosC=3acosB-ccosB,$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,則△ABC的面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:在半徑為R的圓的內(nèi)接矩形中,面積最大的是正方形,它的面積等于2R2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=$\frac{2x+3}{\sqrt{4kx+3}}$
(1)若f(x)的定義域為R,求實數(shù)k的值;
(2)是否存在實數(shù)k,使得f(x)的定義域為(-∞,-2)?若存在,求出實數(shù)k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案