雙曲線16x2-9y2=144的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且|PF1||PF2|=32,則∠F1PF2的大小為_(kāi)_______.

90°.
分析:由題意知|PF1||PF2|sin∠F1PF2=∠F1PF2,由此可知|sin∠F1PF2=∠F1PF2=,所以cos∠F1PF2=0,進(jìn)而得到∠F1PF2=90°..
解答:由題意知|PF1||PF2|sin∠F1PF2=∠F1PF2
∵|PF1||PF2|=32,
∴|sin∠F1PF2=∠F1PF2=
∴cos∠F1PF2=0,
∴∠F1PF2=90°.
答案:90°.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線16x2-9y2=144的右焦點(diǎn)為F2,M是雙曲線上任意一點(diǎn),點(diǎn)A的坐標(biāo)為(9,2),則|MA|+
3
5
|MF2|
的最小值為( 。
A、9
B、
36
5
C、
42
5
D、
54
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)是雙曲線16x2-9y2=144的中心,而焦點(diǎn)是雙曲線的頂點(diǎn),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線16x2-9y2=144的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且|PF1||PF2|=32,則∠F1PF2的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件求拋物線的標(biāo)準(zhǔn)方程:
(1)拋物線的焦點(diǎn)是雙曲線 16x2-9y2=144的左頂點(diǎn);
(2)過(guò)點(diǎn)P(2,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求雙曲線16x2-9y2=-144的實(shí)軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率和漸近線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案