【題目】某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務,每件產(chǎn)品由3A 型零件和1B 型零件配套組成.每個工人每小時能加工5A 型零件或者3B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一中型號的零件.設加工A 型零件的工人人數(shù)為x名(x∈N*

1)設完成A 型零件加工所需時間為小時,寫出的解析式;

2)為了在最短時間內(nèi)完成全部生產(chǎn)任務,x應取何值?

【答案】1)(232

【解析】

(1)生產(chǎn)150件產(chǎn)品,需加工A型零件450個,則完成A型零件加工所需時間(其中,

2)生產(chǎn)150件產(chǎn)品,需加工B型零件150個,則完成B型零件加工所需時間(其中,);

設完成全部生產(chǎn)任務所需時間小時,則中的較大者,

,則,解得

所以,當時,;當時,

時,,故上單調(diào)遞減,

上的最小值為(小時);

時,,故上單調(diào)遞增,

的最小值為(小時);

,上的最小值為,為所求,

所以,為了在最短時間內(nèi)完成生產(chǎn)任務,應取32

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,底面是等腰梯形,,點的中點,以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得恒成立

D.對任意兩個正實數(shù),,且,若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.

1)求C的普通方程和l的傾斜角;

2)設點lC交于A,B兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)若,解不等式;

(Ⅱ)當時,函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學利用周末組織教職員工進行了一次秋季登山健身的活動,有N個人參加,現(xiàn)將所有參加者按年齡情況分為等七組,其頻率分布直方圖如圖所示,已知這組的參加者是6.

1)根據(jù)此頻率分布直方圖求N

2)組織者從這組的參加者(其中共有4名女教師,其余全為男教師)中隨機選取3名擔任后勤保障工作,其中女教師的人數(shù)為X,求X的分布列、均值及方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如下:

消費次第

收費比率

該公司注冊的會員中沒有消費超過次的,從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如下:

消費次數(shù)

人數(shù)

假設汽車美容一次,公司成本為元,根據(jù)所給數(shù)據(jù),解答下列問題:

1)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;

2)以事件發(fā)生的頻率作為相應事件發(fā)生的概率,設該公司為一位會員服務的平均利潤為元,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)所示,在中,邊上的高,且,,的中點.現(xiàn)沿進行翻折,使得平面平面,得到的圖形如圖(2)所示.

1)求證:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.時,命題“若,則”為真命題

D.命題“,”的否定是“

查看答案和解析>>

同步練習冊答案