8.在復(fù)平面內(nèi)O為極坐標原點,復(fù)數(shù)-1+2i與1+3i分別為對應(yīng)向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,則|$\overrightarrow{AB}$|=( 。
A.3B.$\sqrt{17}$C.$\sqrt{5}$D.5

分析 直接利用復(fù)數(shù)對應(yīng)點的坐標,求解距離即可.

解答 解:在復(fù)平面內(nèi)O為極坐標原點,復(fù)數(shù)-1+2i與1+3i分別為對應(yīng)向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,
可得A(-1,2),B(1,3),
則|$\overrightarrow{AB}$|=$\sqrt{(-1-1)^{2}+(2-3)^{2}}$=$\sqrt{5}$.
故選:C.

點評 本題考查復(fù)數(shù)的幾何意義,距離公式的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,是奇函數(shù)的是(  )
A.f(x)=x2+1B.f(x)=|x+1|C.f(x)=x3+1D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.方程$\frac{x^2}{2+m}$-$\frac{y^2}{2-m}$=1表示雙曲線,則m的取值范圍( 。
A.-2<m<2B.m>0C.m≥0D.|m|≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若函數(shù)y=tanθ+$\frac{cos2θ+1}{sin2θ}$(0<θ<$\frac{π}{2}$),則函數(shù)y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(sinωx-cosωx,sinωx),$\overrightarrow$=(sinωx+cosωx,2$\sqrt{3}$cosωx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+λ的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈($\frac{1}{2}$,1).
(I)求函數(shù)f(x)的最小正周期及單調(diào)減區(qū)間;
(II)若y=f(x)的圖象經(jīng)過點($\frac{π}{5}$,0),若集合A={x|f(x)=t,x∈[0,$\frac{3π}{5}$]}僅有一個元素,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若$sinx-sin(\frac{3π}{2}-x)=\sqrt{2}$,則$tanx+tan(\frac{3π}{2}-x)$的值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)f(x)=alnx+$\sqrt{x}$-1,
(1)求f(x)的單調(diào)區(qū)間
(2)證明:當a=1,x>1時,f(x)<$\frac{3}{2}$(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.用區(qū)間表示{x|x<0或x≥1}=(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)是在定義(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y)且f(2)=1.試回答下列問題:
(1)證明:f(8)=3;
(2)求不等式f(x)-f(x+2)>3的解集.

查看答案和解析>>

同步練習冊答案