19.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線${C_2}:ρ{sin^2}θ=4cosθ$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順序?yàn)镻,Q,R,S,求||PQ|-|RS||的值.

分析 (I)曲線C1:ρ=2cosθ,即ρ2=2ρcosθ,利用互化公式可得直角坐標(biāo)方程.曲線${C_2}:ρ{sin^2}θ=4cosθ$,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角標(biāo)準(zhǔn)方程.
(II)設(shè)四點(diǎn)在C上的排列順次為P,Q,R,S,其參數(shù)分別為t1,t2,t3,t4.曲線C的參數(shù)方程代入拋物線方程可得:3t2-8t-32=0.△1>0,可得t1+t4.曲線C的參數(shù)方程代入圓的方程可得:t2+t=0.△2>0,可得t2+t3.∴||PQ|-|RS||=|(t2-t1)-(t4-t3)|=|(t2+t3)-(t1+t4)|即可得出.

解答 解:(Ⅰ)∵曲線C1:ρ=2cosθ,即ρ2=2ρcosθ,
∴曲線C1的直角坐標(biāo)方程為:x2+y2-2x=0,
∵曲線${C_2}:ρ{sin^2}θ=4cosθ$,即ρ2sin2θ=4ρcosθ,
∴曲線C2的直角坐標(biāo)方程為:y2=4x.
(Ⅱ)設(shè)四點(diǎn)在C上的排列順序?yàn)镻,Q,R,S,其參數(shù)分別為t1,t2,t3,t4
曲線C的參數(shù)方程$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù))代入拋物線方程y2=4x,
可得:3t2-8t-32=0.△1>0,可得t1+t4=$\frac{8}{3}$.
曲線C的參數(shù)方程$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù))代入圓的方程可得:t2+t=0.△2>0,可得t2+t3=-1.
∴||PQ|-|RS||=|(t2-t1)-(t4-t3)|=|(t2+t3)-(t1+t4)|=|1+$\frac{8}{3}$|=$\frac{11}{3}$.
故答案為:$\frac{11}{3}$.

點(diǎn)評(píng) 本題考查曲線與坐標(biāo)軸的交點(diǎn)坐標(biāo)的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex-mx2-2x
(1)若m=0,討論f(x)的單調(diào)性;
(2)若$m<\frac{e}{2}-1$,證明:當(dāng)x∈[0,+∞)時(shí),$f(x)>\frac{e}{2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array},}\right.0≤θ<π$,則它的直角坐標(biāo)方程為$\frac{{x}^{2}}{5}+{y}^{2}=1$,-$\sqrt{5}$<x≤$\sqrt{5}$,0≤y≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知{an},{bn}是公差分別為d1,d2的等差數(shù)列,且An=an+bn,Bn=anbn.若A1=1,A2=3,則An=2n-1;若{Bn}為等差數(shù)列,則d1d2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某流程圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是①②③.
①f(x)=$\frac{sinx}{{x}^{2}}$          
②f(x)=ln($\sqrt{{x}^{2}+1}$+x)
③f(x)=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$
④f(x)=$\frac{si{n}^{2}x}{1+co{s}^{2}x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.把參數(shù)方程$\left\{\begin{array}{l}{x=\frac{4k}{1-{k}^{2}}}\\{y=\frac{4{k}^{2}}{1-{k}^{2}}}\end{array}\right.$(k為參數(shù))化為普通方程,并說明它表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知點(diǎn)D為△ABC所在平面內(nèi)一點(diǎn).且$\overrightarrow{AD}$=3$\overrightarrow{AB}$+4$\overrightarrow{AC}$,若點(diǎn)E為直線BC上一點(diǎn),且$\overrightarrow{ED}$=λ$\overrightarrow{AE}$,則λ的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下2×2列聯(lián)表:(單位:人).
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
總計(jì)105
已知在全部105人中隨機(jī)抽取1人成績是優(yōu)秀的概率為$\frac{2}{7}$,
(1)請(qǐng)完成上面的2 x×2列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有95%的把握認(rèn)為“成績與班級(jí)有關(guān)系”?
(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機(jī)選派3名學(xué)生參加全市數(shù)學(xué)競賽,記參加競賽的男生人數(shù)為X,求X的分布列與期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知不等式|2x-3|+x-6≥0的解集為M.
(Ⅰ)求M;
(Ⅱ)當(dāng)a,b∈M時(shí),證明:$|\frac{a}{3}+\frac{3}|≥|\frac{a}+1|$.

查看答案和解析>>

同步練習(xí)冊(cè)答案