(2012•陜西)設函數(shù)發(fā)f(x)=
x
,x≥0
(
1
2
)
x
,x<0
,則f(f(-4))=
4
4
分析:利用分段函數(shù)先求f(-4),然后再求f(f(-4))的值.
解答:解:因為函數(shù)f(x)=
x
,x≥0
(
1
2
)
x
,x<0
,所以f(-4)=(
1
2
)
-4
=16,
所以f(f(-4))=f(16)=
16
=4.
故答案為:4.
點評:本題考查函數(shù)的值的求法,注意分段函數(shù)的定義域的應用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設a,b∈R,i是虛數(shù)單位,則“ab=0”是“復數(shù)a+
b
i
為純虛數(shù)”的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設函數(shù)f(x)=xex,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
1
2
,1)
內(nèi)存在唯一的零點;
(2)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍;
(3)在(1)的條件下,設xn是fn(x)在(
1
2
,1)
內(nèi)的零點,判斷數(shù)列x2,x3,…,xn?的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設函數(shù)f(x)=
lnx,x>0
-2x-1,x≤0
,D是由x軸和曲線y=f(x)及該曲線在點(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
12
,1)
內(nèi)存在唯一的零點;
(2)設n為偶數(shù),|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

同步練習冊答案