已知x,y滿足不等式組
y≤x
x+y≥2
x≤2
,則z=2x+y的最大值與最小值比為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可求最值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)B時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
x=2
y=x
,解得
x=2
y=2
,即B(2,2),
代入目標(biāo)函數(shù)z=2x+y得z=2×2+2=6.
即目標(biāo)函數(shù)z=2x+y的最大值為6.
當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線y=-2x+z的截距最小,
此時(shí)z最小.
y=x
x+y=2
,解得
x=1
y=1
,即A(1,1),
代入目標(biāo)函數(shù)z=2x+y得z=2+1=3.
即目標(biāo)函數(shù)z=2x+y的最小值為3.
則z=2x+y的最大值與最小值比為6:3=2:1
故答案為:2:1
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校為進(jìn)行愛國主義教育,在全校組織了一次有關(guān)釣魚島歷史知識(shí)的競賽.現(xiàn)有甲、乙兩隊(duì)參加釣魚島知識(shí)競賽,每隊(duì)3人,規(guī)定每人回答一個(gè)問題,答對為本隊(duì)贏得1分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對的概率均為
2
3
,乙隊(duì)中3人答對的概率分別為
2
3
、
2
3
、
1
2
,且各人回答正確與否相互之間沒有影響,用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用A表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用B表示“甲隊(duì)總得分大于乙隊(duì)總得分”這一事件,求P(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-4|+|x-6|.
(1)解不等式f(x)>5;
(2)若存在實(shí)數(shù)x滿足f(x)≥ax-1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=3,a2=7,當(dāng)n≥1時(shí),an+2等于anan+1的個(gè)位數(shù),則該數(shù)列的第2015項(xiàng)是( 。
A、1B、3C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
},B={(x,y)|x2+(y-1)2≤m},若A⊆B,則m的取值范圍是( 。
A、[1,+∞)
B、[
2
,+∞)
C、[2,+∞)
D、[
5
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中:
(1)d=-
1
3
,a7=8,求a1;
(2)a1=12,a6=27,求d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo):y=
x5
+
x7
+
x9
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(2x-
π
6
)圖象向左平移
π
4
個(gè)單位,所得函數(shù)圖象的一條對稱軸的方程是( 。
A、x=
π
3
B、x=
π
6
C、x=
π
12
D、x-=
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={-1,0,
1
2
,1},集合 B={y|y=2x,x∈A},則集合A∩B=( 。
A、{-1,0,
1
2
,1}
B、{0,
1
2
,1}
C、{
1
2
,1}
D、{0,1}

查看答案和解析>>

同步練習(xí)冊答案