設(shè)數(shù)列的前項(xiàng)和為,,且對(duì)任意正整數(shù),點(diǎn)在直線上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,則說(shuō)明理由.
(Ⅲ)求證:.
解:(Ⅰ)由題意可得:
①
時(shí), ② ……………… 1分
①─②得, …………………… 3分
是首項(xiàng)為,公比為的等比數(shù)列, ……………… 4分
(Ⅱ)解法一: ……………… 5分
若為等差數(shù)列,
則成等差數(shù)列, ……… 6分
得 ……………… 8分
又時(shí),,顯然成等差數(shù)列,
故存在實(shí)數(shù),使得數(shù)列成等差數(shù)列.…… 9分
解法二: ………… 5分
… ………… 7分
欲使成等差數(shù)列,
只須即便可.…8分
故存在實(shí)數(shù),使得數(shù)列成等差數(shù)列.……… 9分
(Ⅲ)解:
=
……… 10分
…… 11分
………… 12分
又函數(shù)在上為增函數(shù),
, ………… 13分
,. ……… 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省高三上學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省寧波市金蘭合作組織高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且滿足,,.
(1)猜想的通項(xiàng)公式,并加以證明;
(2)設(shè),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三12月月考考試?yán)砜茢?shù)學(xué) 題型:解答題
(12分)設(shè)數(shù)列的前項(xiàng)和為,,且對(duì)任意正整數(shù),點(diǎn)在直線上.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省淮安市淮陰區(qū)2009-2010學(xué)年度第二學(xué)期期末高一年級(jí)調(diào)查測(cè)試數(shù)學(xué)試題 題型:解答題
(本題滿分16分)
設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意,都有.
⑴求數(shù)列的首項(xiàng);
⑵求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
⑶數(shù)列滿足,問(wèn)是否存在,使得恒成立?如果存在,求出 的值,如果不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com