幾何體EFG —ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=l,AE=。

(I)求證:EF⊥平面GDB;

(Ⅱ)線段DG上是否存在點(diǎn)M使直線BM與平面BEF所成的角為45°,若存在求等¥ 的值;若不存在,說(shuō)明理由.

 

【答案】

(I)證明如下(Ⅱ)存在

【解析】

試題分析:證明:(1)由已知有,

,

連結(jié),在正方形中,,,

,

,

為平行四邊行,,

,

解:(2)分別以軸,軸,軸建立空間直角坐標(biāo)系,

,

,

為平面的一個(gè)法向量,,

,,

,,

存在此時(shí)

考點(diǎn):直線與平面垂直的判定定理

點(diǎn)評(píng):在立體幾何中,?嫉亩ɡ硎牵褐本與平面垂直的判定定理、直線與平面平行的判定定理。當(dāng)然,此類(lèi)題目也經(jīng)常要我們求出幾何體的體積和表面積。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)一個(gè)空間幾何體G-ABCD的三視圖如圖所示,其中Ai,Bi,Ci,Di,Gi(i=1,2,3)分別是A,B,C,D,G在直立、側(cè)立、水平三個(gè)投影面內(nèi)的投影.在視圖中,四邊形A1B2C3D4為正方形,且A1B2=2a;在側(cè)視圖中,A2D2⊥A2G2;在俯視圖中,G3D3=G3C3=2
2a
.

(Ⅰ)根據(jù)三視圖畫(huà)出幾何體的直觀圖,并標(biāo)明A,B,C,D,G五點(diǎn)的位置;
(Ⅱ)證明:平面AGD⊥平面BGC;
(Ⅲ)求三棱錐D-ACG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)P是平面ABCD外的點(diǎn),四邊形ABCD是平行四邊形,
AB
=(2,-1,-4),
AD
=(4,2,0),
AP
=(-1,2,-1).
(1)求證:PA⊥平面ABCD;
(2)對(duì)于向量
a
=(x1,y1z1),
b
=(x2y2z2),
c
=(x3y3z3)
,定義一種運(yùn)算:(
a
×
b
)•
c
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2z3-x3y2z1
,試計(jì)算(
AB
×
AD
)-
AP
的絕對(duì)值;說(shuō)明其與幾何體P-ABCD的體積關(guān)系,并由此猜想向量這種運(yùn)算(
AB
×
AD
)-
AP
的絕對(duì)值的幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知幾何體EFG-ABCD如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長(zhǎng)為1,點(diǎn)M在DG上,若直線MB與平面BEF所角為45°,則DM=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知幾何體E-ABCD如圖所示,其中四邊形ABCD為矩形,△ABE為等邊三角形,且AD=
3
,AE=2,DE=
7
,點(diǎn)F為棱BE上的動(dòng)點(diǎn).
(1)若DE∥平面AFC,試確定點(diǎn)F的位置;
(2)在(1)的條件下,求二面角E-DC-F的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案