2.已知tanα=-$\frac{4}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{5}{13}$,β是第三象限角,求cos (α-β)的值.

分析 利用同角三角函數(shù)的基本關(guān)系求得 sinα和cosα、sinβ的值,再利用兩角差的余弦公式求得cos (α-β)的值.

解答 解:∵tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,α∈($\frac{π}{2}$,π),sin2α+cos2α=1,∴sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$.
∵cosβ=-$\frac{5}{13}$,β是第三象限角,∴sinβ=-$\sqrt{{1-cos}^{2}β}$=-$\frac{12}{13}$,
∴cos (α-β)=cosαcosβ+sinαsinβ=-$\frac{3}{5}$•(-$\frac{5}{13}$)+$\frac{4}{5}$•(-$\frac{12}{13}$)=-$\frac{33}{65}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在極坐標(biāo)系中,O為極點(diǎn),已知圓C的圓心為$(1,\frac{π}{4})$,半徑r=1,點(diǎn)P在圓C上運(yùn)動(dòng).
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)在直角坐標(biāo)系(與極坐標(biāo)系取相同的長(zhǎng)度單位,且以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸)中,若Q為線段OP的中點(diǎn),求點(diǎn)Q軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,若a2=b2-bc+c2,則A=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-1)dx=$\frac{π}{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.5位好朋友相約乘坐迪士尼樂(lè)園的環(huán)園小火車(chē).小火車(chē)的車(chē)廂共有4節(jié),設(shè)每一位乘客進(jìn)入每節(jié)車(chē)廂是等可能的,則這5位好朋友無(wú)人落單(即一節(jié)車(chē)廂內(nèi),至少有5人中的2人)的概率是$\frac{31}{256}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.以下四個(gè)命題中:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模擬的擬合效果越好;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
③對(duì)分類(lèi)變量x與y的隨機(jī)變量k2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“x與y無(wú)關(guān)系”的把握程度越大;
④對(duì)分類(lèi)變量x與y的隨機(jī)變量k2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.原始社會(huì)時(shí)期,人們通過(guò)在繩子上打結(jié)來(lái)計(jì)算數(shù)量,即“結(jié)繩計(jì)數(shù)”.當(dāng)時(shí)有位父親,為了準(zhǔn)確記錄孩子的成長(zhǎng)天數(shù),在粗細(xì)不同的繩子上打結(jié),由細(xì)到粗,滿七進(jìn)一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.計(jì)算定積分:${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx=$\frac{{π}^{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.方程($\frac{1}{3}$)x=|x2-4x+3|的解的個(gè)數(shù)為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案