已知定義在R上的函數(shù)f(x)滿(mǎn)足:①函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng);②對(duì)?x∈R,f(
3
4
-x)=f(
3
4
+x)
成立;③當(dāng)x∈(-
3
2
,-
3
4
]
時(shí),f(x)=log2(-3x+1),則f(2011)=
 
分析:由于函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),故可得f(1+x-1)+f(1-x-1)=0,由②得出f(-x)=f(
3
2
+x)
兩者結(jié)合得出函數(shù)的周期性,再結(jié)合③即可求出f(2011).
解答:解:由于函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),
故可得f(1+x-1)+f(1-x-1)=0,
即f(x)=-f(-x)對(duì)任何x都成立,
由②得出f(-x)=f(
3
2
+x)

f(
3
2
+x)=-f(x)

∴f(3+x)=f(x),f(x)是周期為3的周期函數(shù),
則f(2011)=f(1)=-f(-1)=-log24=-2,
故答案為:-2
點(diǎn)評(píng):本題考查函數(shù)的對(duì)稱(chēng)性與周期性的性質(zhì),知識(shí)性較強(qiáng).解答的關(guān)鍵是由函數(shù)的對(duì)稱(chēng)性得出函數(shù)的周期性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)y=f(x)滿(mǎn)足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱(chēng),則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案