6.復(fù)數(shù)$z=\frac{10i}{1+3i}$(其中i為虛數(shù)單位),$\overline z$為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A.z=-3+iB.$\overline z=3-i$C.z=1-3iD.$\overline z=-1+3i$

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:復(fù)數(shù)$z=\frac{10i}{1+3i}$=$\frac{10i(1-3i)}{(1+3i)(1-3i)}$=i+3,$\overline z$=3-i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|log3x<1},B={y|y=3x,x≥0},則A∩B=(  )
A.B.{x|1<x≤3}C.{x|1<x<3}D.{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)口袋內(nèi)裝有大小相同的6個(gè)球,其中3個(gè)白球,3個(gè)黑球,從中一次摸出兩個(gè)球,則摸出的兩個(gè)球至少一個(gè)是白球的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)(1+i)(x+yi)=2,其中i為虛數(shù)單位,x,y是實(shí)數(shù),則|2x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={-1,0,1,2,3},N={x|x2-2x≤0},則M∩N=(  )
A.{1,2}B.{2,3}C.{-1,0,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某沿海四個(gè)城市A、B、C、D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,CD=250$\sqrt{6}$nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)以50nmile/h的速度向D直線航行,60min后,輪船由于天氣原因收到指令改向城市C直線航行,收到指令時(shí)城市C對(duì)于輪船的方位角是南偏西θ度,則sinθ=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=x+\frac{1}{e^x}$,若對(duì)任意x∈R,f(x)>ax恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1-e)B.(1-e,1]C.[1,e-1)D.(e-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2lnax(a>0).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=e時(shí),證明:t>0時(shí),存在唯一的s,使ts2+t2=f(s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=$\frac{1}{2}$,2Sn-SnSn-1=1(n≥2).
(1)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn=$\frac{n{a}_{n}}{1+30{a}_{n}}$,n∈N*,求bn的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案