4.求過點(diǎn)A$({2,\frac{π}{4}})$且平行于極軸的直線的極坐標(biāo)方程.

分析 設(shè) P(ρ,θ)上直線上任一點(diǎn),則P到極軸的距離等于 A 到極軸的距離,由此能求出結(jié)果.

解答 解:設(shè) P(ρ,θ)上直線上任一點(diǎn),
則P到極軸的距離等于 A 到極軸的距離,
因此ρsinθ=2sin$\frac{π}{4}$=$\sqrt{2}$,
所以,過點(diǎn)A$({2,\frac{π}{4}})$且平行于極軸的直線的極坐標(biāo)方程 ρsinθ=$\sqrt{2}$.

點(diǎn)評(píng) 本題考查直線的極坐標(biāo)方程的求法,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a,b,c,若2acosB=c,則該三角形一定是(  )
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若把函數(shù)f(x)=sinx的圖象向左平移φ(φ>0)個(gè)單位,再把所得圖象的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{4}$,縱坐標(biāo)保持不變,得到函數(shù)圖象C1;把函數(shù)f(x)=sinx的圖象的橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{4}$,縱坐標(biāo)保持不變,再把所得圖象向左平移φ(φ>0)個(gè)單位,得到函數(shù)圖象C2.若圖象C1與C2重合,則φ的最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=$\frac{1}{3}{x^3}-(1+\frac{2}){x^2}$+2bx在(-3,1)上不是單調(diào)函數(shù),則f(x)在R上的極小值為( 。
A.$2b-\frac{4}{3}$B.$\frac{3}{2}b-\frac{2}{3}$C.0D.${b^2}-\frac{1}{6}{b^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,直三棱柱ABC-A1B1C1的底面為直角三角形,兩直角邊AB和AC的長(zhǎng)分別為4和2,側(cè)棱AA1的長(zhǎng)為5.
(1)求三棱柱ABC-A1B1C1的體積;
(2)設(shè)M是BC中點(diǎn),求直線A1M與平面ABC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果直線ρ=$\frac{1}{cosθ-2sinθ}$與直線l關(guān)于極軸對(duì)稱,則直線l的極坐標(biāo)方程是( 。
A.ρ=$\frac{1}{cosθ+2sinθ}$B.ρ=$\frac{1}{2sinθ-conθ}$C.ρ=$\frac{1}{2cosθ+sinθ}$D.ρ=$\frac{1}{2cosθ-sinθ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程為 ρ=2cosθ,直線l的極坐標(biāo)方程為 ρ sin(θ+$\frac{π}{6}$)=m.
(I)求曲線C與直線l的直角坐標(biāo)方程;
(II)若直線l與曲線C有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點(diǎn),BA=$\sqrt{7},AC=3,{B_1}C=4\sqrt{2}$
(1)證明:DE∥平面ABC;
(2)求圓柱OO1的體積和表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若不等式2x-1>m(x2-1)對(duì)滿足-2≤m≤2的所有m都成立,則x的取值范圍是($\frac{\sqrt{7}-1}{2}$,$\frac{\sqrt{3}+1}{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案