已知圓C的圓心坐標為(2,2),且和直線3x+4y-9=0相切.
(1)求圓C的方程;
(2)是否存在實數(shù)a,使圓C與直線x-y+a=0交于A、B兩點,且滿足∠AOB=90°.若存在,求出a的值;若不存在,請說明理由.
考點:直線和圓的方程的應用
專題:直線與圓
分析:(1)根據(jù)直線和圓相切的關系求出圓的半徑,即可求圓C的方程;
(2)將直線和圓聯(lián)立,根據(jù)條件∠AOB=90°.進行消元轉化為根與系數(shù)的關系即可得到結論.
解答: 解:(1)由于圓C與直線相切,故圓C的半徑是r=
|3×2+4×2-9|
32+42
=
5
5
=1

則圓C的方程為:(x-2)2+(y-2)2=1.
(2)由x-y+a=0得y=x+a,代入圓的方程,得:
(x-2)2+(x+a-2)2=1,
整理得:2x2+(2a-8)x+a2-4a+7=0,
設A(x1,y1),B(x2,y2),
則x1+x2=4-a,x1x2=
a2-4a+7
2
,
若∠AOB=90°成立,需
OA
OB

OA
OB
=x1x2+y1y2=0,
即x1x2+(x1+a)(x2+a)=2x1x2+a(x1+x2)+a2=a2+7≠0,
∴x1x2+y1y2≠0,
所以不存在a的值,滿足條件∠AOB=90°.
點評:本題主要考查圓的方程,利用直線和圓的位置關系是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

五個人站成一排,求在下列條件下的不同排法種數(shù):(用數(shù)字作答)
(1)甲、乙兩人相鄰;   
(2)甲、乙兩人不相鄰;
(3)甲不在排頭,并且乙不在排尾;
(4)甲在乙前,并且乙在丙前.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班數(shù)學老師對班上50名同學一次考試的數(shù)學成績進行統(tǒng)計,得到如下統(tǒng)計表:
分數(shù)段[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]
人數(shù)2a121610c
頻率0.040.160.240.32bd
(1)求表中a,b,c的值,并估計該班的平均分x;
(2)若該老師想在低于70分的所有同學中隨機挑選3位同學了解學習情況,記X為所選3人中分數(shù)在[30,50)的同學的人數(shù),求X的概率分布列和均值EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和是Sn,Sn=2an-1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=2n•an,求數(shù)列{bn}的前n項和Tn;
(3)若數(shù)列{cn}滿足cn=3n+2(-1)n-1λan(λ為非零常數(shù)),確定λ的取值范圍,使n∈N*時,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,點(an+2,Sn+1)在直線y=4x-5上,其中n∈N*,令bn=an+1-2an,且 a1=1.
(1)求{bn}的通項公式;
(2)若存在數(shù)列{Cn}滿足等式:bn=
C1
1
+
C2
2
+
C3
3
+…+
Cn
n
(n∈N*),求{Cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=a+bi(a,b為實數(shù)).
(Ⅰ)若復數(shù)z∧為純虛數(shù),且|z+1|=
2
,求b的值;
(Ⅱ)若a∈{-1,-2,0,1},b∈{1,2,3},記“復數(shù)z在復平面上對應的點位于第二象限”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.
(1)證明:BD⊥AA1;
(2)求二面角A1-C1D-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}滿足an+12=2an2+anan+1,且a2+a4=2a3+4,其中n∈N*
(1)求數(shù)列{an}的通項公式;
(2)令bn=
2n-1
(an-1)(2an-1)
,記數(shù)列{bn}的前n項和為Sn,其中n∈N*,求證:
1
3
≤Sn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)如圖所示的程序框圖回答下列問題:如果輸入S為20,則輸出的i=
 
;如果輸出的i為3,則輸入的S的取值范圍是
 

查看答案和解析>>

同步練習冊答案