盒子里共有大小相同的3只白球,1只黑球.若從中隨機(jī)摸出兩只球,則它們顏色相同的概率是________.
四個(gè)球取出兩球有6種等可能基本事件:(黑,白1),(黑,白2),(黑,白3),(白1,白2),(白1,白3),(白2,白3).兩只球顏色相同有3種:(白1,白2),(白1,白3),(白2,白3).
所以所求概率為P
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商家推出一款簡(jiǎn)單電子游戲,彈射一次可以將三個(gè)相同的小球隨機(jī)彈到一個(gè)正六邊形的頂點(diǎn)與中心共七個(gè)點(diǎn)中的三個(gè)位置上(如圖),用S表示這三個(gè)球?yàn)轫旤c(diǎn)的三角形的面積.規(guī)定:當(dāng)三球共線時(shí),S=0;當(dāng)S最大時(shí),中一等獎(jiǎng),當(dāng)S最小時(shí),中二等獎(jiǎng),其余情況不中獎(jiǎng),一次游戲只能彈射一次.

(1)求甲一次游戲中能中獎(jiǎng)的概率;
(2)設(shè)這個(gè)正六邊形的面積是6,求一次游戲中隨機(jī)變量S的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若是從、、、四個(gè)數(shù)中任取的一個(gè)數(shù),是從、三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

袋內(nèi)裝有6個(gè)球,這些球依次被編號(hào)為1,2,3,…,6,設(shè)編號(hào)為n的球質(zhì)量為n2-6n+12(單位:g),如果從這些球中不放回的任意取出2個(gè)球(不受重量、編號(hào)的影響),求取出的兩球質(zhì)量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(1)求取出的4個(gè)球均為黑球的概率.
(2)求取出的4個(gè)球中恰有1個(gè)紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},從集合A中選取不相同的兩個(gè)數(shù),構(gòu)成平面直角坐標(biāo)系上的點(diǎn),觀察點(diǎn)的位置,則事件A={點(diǎn)落在x軸上}與事件B={點(diǎn)落在y軸上}的概率關(guān)系為(  )
(A)P(A)>P(B)
(B)P(A)<P(B)
(C)P(A)=P(B)
(D)P(A),P(B)大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)袋子中裝有六個(gè)大小形狀完全相同的小球,其中一個(gè)編號(hào)為1,兩個(gè)編號(hào)為2,三個(gè)編號(hào)為3.現(xiàn)從中任取一球,記下編號(hào)后放回,再任取一球,則兩次取出的球的編號(hào)之和等于4的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若以連續(xù)拋擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工科院校對(duì)AB兩個(gè)專(zhuān)業(yè)的男女生人數(shù)進(jìn)行調(diào)查,得到如下的列聯(lián)表:
 
專(zhuān)業(yè)A
專(zhuān)業(yè)B
總計(jì)
女生
12
4
16
男生
38
46
84
總計(jì)
50
50
100
(1)從B專(zhuān)業(yè)的女生中隨機(jī)抽取2名女生參加某項(xiàng)活動(dòng),其中女生甲被選到的概率是多少?
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為工科院校中“性別”與“專(zhuān)業(yè)”有關(guān)系呢?
注:K2
P(K2k0)
0.25
0.15
0.10
0.05
0.025
k0
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>

同步練習(xí)冊(cè)答案