如圖,多面體中,四邊形是邊長為的正方形,平面垂直于平面,且,,.
(Ⅰ)求證:;
(Ⅱ)若分別為棱的中點,求證:∥平面;
(Ⅲ)求多面體的體積.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ).

試題分析:(Ⅰ)先證明平面,再證明 ,再證明平面,從而證明;(Ⅱ)先作輔助線,在中找到,在直角梯形中,,所以,所以,即平面;(Ⅲ)把多面體的體積分成兩部分:.
試題解析:(Ⅰ)連結(jié),∵是正方形,∴.
∵平面平面,,是兩平面的交線,
平面.而平面,∴.
又∵,
平面.而平面,∴.          4分
(Ⅱ)作,是垂足.
中,,.
在直角梯形中,.
,∴四邊形是平行四邊形,∴.
平面,∴平面.           9分

(Ⅲ).       13分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),曲線處的切線過點.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在中,,,上的高,沿折起,使.
(Ⅰ)證明:平面⊥平面;
(Ⅱ)若,求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體中,,的中點,的中點.

(I)求證:平面;
(II)求證:平面;
(III)若二面角的大小為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,平行四邊形中,,的面積為,則平行四邊形的面積為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在五面體中,四邊形是正方形,平面

(1)求異面直線所成角的余弦值;
(2)證明:平面
(3)求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直線三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,空間四邊形的對棱、的角,且,平行于的截面分別交、、、、

(1)求證:四邊形為平行四邊形;
(2)的何處時截面的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列四個命題:
①兩個相交平面有不在同一直線上的三個公交點
②經(jīng)過空間任意三點有且只有一個平面
③過兩平行直線有且只有一個平面
④在空間兩兩相交的三條直線必共面
其中正確命題的序號是               

查看答案和解析>>

同步練習冊答案