10.已知集合A={x||x+1|≥1},B={x|x≥-1},則(∁RA)∩B=(  )
A.[-1,0]B.[-1,0)C.(-2,-1)D.(-2,-1]

分析 求解絕對(duì)值的不等式化簡A,再由交、并、補(bǔ)集的混合運(yùn)算得答案.

解答 解:∵A={x||x+1|≥1}={x|x≤-2或x≥0},
∴∁RA={x|-2<x<0},又B={x|x≥-1},
∴(∁RA)∩B=[-1,0).
故選:B.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=\frac{2}{π}x-sinx$的部分圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,四面體ABCD中,E,F(xiàn)分別是AC,BD的中點(diǎn),若CD=2AB=4,EF⊥AB,則EF與CD所成角的度數(shù)為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.下列四個(gè)命題:
①“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0”,則a2+b2≠0”;
②已知曲線C的方程是kx2+(4-k)y2=1(k∈R),曲線C是橢圓的充要條件是0<k<4;
③“$m=\frac{1}{2}$”是“直線(m+2)x+3my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的充分不必要條件;
④已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線經(jīng)過點(diǎn)(1,2),則該雙曲線的離心率的值為$\sqrt{5}$.
上述命題中真命題的序號(hào)為③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的側(cè)視圖中的虛線部分是( 。
A.圓弧B.拋物線的一部分C.橢圓的一部分D.雙曲線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{8}{3}$+8πB.$\frac{16}{3}$+8πC.$\frac{8}{3}$+16πD.$\frac{16}{3}$+16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù) f(x)=1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$,g (x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{x^3}{3}$,設(shè)函數(shù)F(x)=f(x-4)?g(x+3),且函數(shù) F ( x) 的零點(diǎn)均在區(qū)間[a,b]( a<b,a,b∈Z )內(nèi),則 b-a 的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.9B.16C.25D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.哈市某公司有五個(gè)不同部門,現(xiàn)有4名在校大學(xué)生來該公司實(shí)習(xí),要求安排到該公司的兩個(gè)部門,且每部門安排兩名,則不同的安排方案種數(shù)為( 。
A.40B.60C.120D.240

查看答案和解析>>

同步練習(xí)冊答案