已知函數(shù)在[t,t+1]上不單調(diào),則t的取值范圍是   
【答案】分析:先由函數(shù)求f′(x)=-x+4-,再由“函數(shù)在[t,t+1]上不單調(diào)”轉(zhuǎn)化為“f′(x)=-x+4-=0在區(qū)間[t,t+1]上有解”從而有在[t,t+1]上有解,進(jìn)而轉(zhuǎn)化為:g(x)=x2-4x+3=0在[t,t+1]上有解,用二次函數(shù)的性質(zhì)研究.
解答:解:∵函數(shù)
∴f′(x)=-x+4-
∵函數(shù)在[t,t+1]上不單調(diào),
∴f′(x)=-x+4-=0在[t,t+1]上有解
在[t,t+1]上有解
∴g(x)=x2-4x+3=0在[t,t+1]上有解
∴g(t)g(t+1)≤0或
∴0<t≤1或2≤t<3.
故答案為:0<t≤1或2≤t<3
點(diǎn)評:本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路:當(dāng)函數(shù)是增函數(shù)時,導(dǎo)數(shù)大于等于零恒成立,當(dāng)函數(shù)是減函數(shù)時,導(dǎo)數(shù)小于等于零恒成立,然后轉(zhuǎn)化為求相應(yīng)函數(shù)的最值問題.注意判別式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱九中高三(上)11月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省鄂州市高三(上)摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市學(xué)軍中學(xué)高三第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)東直門中學(xué)高三數(shù)學(xué)提高測試試卷7(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年浙江省高考數(shù)學(xué)仿真模擬試卷4(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:

查看答案和解析>>

同步練習(xí)冊答案