分析 (Ⅰ)推導(dǎo)出BB1∥CC1,AB1∥D1C1,從而面ABB1∥面CC1D1D,同理,面ADD1∥面BB1C1C,進(jìn)而AB∥CD,BC∥AD,由此能證明四邊形ABCD為平行四邊形.
(Ⅱ)(i)推導(dǎo)出EF⊥CD,CD⊥DF,由此能證明CD⊥平面DEF.
(ii)過點(diǎn)D1作D1H⊥EC1于點(diǎn)H,連結(jié)DH,推導(dǎo)出∠DHD1是二面角D-EC1-D1的平面角,由此能求出二面角D-EC1-D1的余弦值.
解答 證明:(Ⅰ)∵BB1⊥面ABCD,CC1⊥面ABCD,
∴BB1∥CC1,又AB1∥D1C1,AB1,BB1是面ABB1內(nèi)兩相交直線,
D1C1,CC1是面CC1,D1D內(nèi)兩相交直線,
∴面ABB1∥面CC1D1D,
同理,面ADD1∥面BB1C1C,
∵A、B、C、D四點(diǎn)共面,故AB∥CD,BC∥AD,
∴四邊形ABCD為平行四邊形.
(Ⅱ)(i)由題意,EF⊥平面CC1D1D,∴EF⊥CD,
∵AD=BC,AB1=CC1=2BB1=4,AE=D1F=1.
∴DD1=2,DF=$\sqrt{5}$,CF=5,CD=AB=2$\sqrt{5}$,
∴DF2+DC2=FC2,∴CD⊥DF,
∵CD⊥EF,DF∩EF=F,∴CD⊥平面DEF.
解:(ii)過點(diǎn)D1作D1H⊥EC1于點(diǎn)H,連結(jié)DH,
∵DD1⊥平面AB1C1D1,故DH⊥EC1,
∴∠DHD1是二面角D-EC1-D1的平面角,
在正方形AB1C1D1中,sin∠D1C1E=$\frac{4}{5}$,
D1H=D1C1,•sin∠D1C1E=4×$\frac{4}{5}=\frac{16}{5}$,
在Rt△DD1H中,∵DD1=2,∴tan∠DHD1=$\frac{5}{8}$,
∴cos$∠DH{D}_{1}=\frac{8\sqrt{89}}{89}$,
∴二面角D-EC1-D1的余弦值為$\frac{8\sqrt{89}}{89}$.
點(diǎn)評 本題考查四邊形為平行四邊形的證明,考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9 | B. | -3 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$) | B. | (-1,$\frac{1+\sqrt{5}}{2}$) | C. | ($\frac{1-\sqrt{5}}{2}$,0) | D. | ($\frac{1-\sqrt{5}}{2}$,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 2012 | D. | 2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+2i | B. | 2+i | C. | -1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{25\sqrt{3}}}{4}$或$\frac{20}{3}$ | B. | $\frac{25\sqrt{3}}{2}$或$\frac{50}{3}$ | C. | $\frac{25\sqrt{3}}{4}$或$\frac{10}{3}$ | D. | $\frac{25\sqrt{3}}{2}$或$\frac{20}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com