【題目】已知函數(shù)

當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.

【答案】(Ⅰ),為極大值點(diǎn)(Ⅱ).

【解析】

(Ⅰ)求出函數(shù)的導(dǎo)數(shù),求出a的值,得到函數(shù)的單調(diào)區(qū)間,求出函數(shù)的極值點(diǎn)即可;

(Ⅱ)求出函數(shù)極值點(diǎn),問(wèn)題轉(zhuǎn)化為[2lnx1]>0,根據(jù)0<x1<1時(shí),0.1<x1<2時(shí),0.即hx)=2lnx(0<x<2),通過(guò)討論t的范圍求出函數(shù)的單調(diào)性,從而確定t的范圍即可.

(Ⅰ),

從而,所以時(shí),為增函數(shù);

時(shí),為減函數(shù)所以為極大值點(diǎn).

(Ⅱ)函數(shù)的定義域?yàn)?/span>,有兩個(gè)極值點(diǎn)

上有兩個(gè)不等的正實(shí)根,所以,

可得

從而問(wèn)題轉(zhuǎn)化為在,時(shí)成立.

即證成立.

即證 即證

亦即證 . ①

1)當(dāng)時(shí),,上為增函數(shù)且,①式在上不成立.

2)當(dāng)時(shí),

,時(shí),所以上為減函數(shù)且,

、在區(qū)間上同號(hào),故①式成立.

,時(shí),的對(duì)稱(chēng)軸,

,時(shí),,不合題意.

綜上可知:滿(mǎn)足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】田忌賽馬是史記中記載的一個(gè)故事,說(shuō)的是齊國(guó)將軍田忌經(jīng)常與齊國(guó)眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等于是孫臏給田忌將軍制定了一個(gè)必勝策略:比賽即將開(kāi)始時(shí),他讓田忌用下等馬對(duì)戰(zhàn)公子們的上等馬,用上等馬對(duì)戰(zhàn)公子們的中等馬,用中等馬對(duì)戰(zhàn)公子們的下等馬,從而使田忌贏得公子們?cè)S多賭注假設(shè)田忌的各等級(jí)馬與某公子的各等級(jí)馬進(jìn)行一場(chǎng)比賽獲勝的概率如表所示:

田忌的馬獲勝概率公子的馬

上等馬

中等馬

下等馬

上等馬

1

中等馬

下等馬

0

比賽規(guī)則規(guī)定:一次比由三場(chǎng)賽馬組成,每場(chǎng)由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場(chǎng)賽馬的馬的等級(jí)各不相同,三場(chǎng)比賽中至少獲勝兩場(chǎng)的一方為最終勝利者.

如果按孫臏的策略比賽一次,求田忌獲勝的概率;

如果比賽約定,只能同等級(jí)馬對(duì)戰(zhàn),每次比賽賭注1000金,即勝利者贏得對(duì)方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為我國(guó)數(shù)學(xué)家趙爽3世紀(jì)初在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則區(qū)域涂色不相同的概率為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)既是奇函數(shù),又在上單調(diào)遞增的是  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為1的正方形沿軸滾動(dòng),點(diǎn)恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)的軌跡方程是,則對(duì)函數(shù)有下列判斷①函數(shù)是偶函數(shù);②對(duì)任意的,都有;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)的值域是;⑤.其中判斷正確的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù):

(I)當(dāng)時(shí),求的最小值;

(II)對(duì)于任意的都存在唯一的使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,等邊三角形PCD所在的平面垂直于底面ABCD,,M是棱PD的中點(diǎn).

求證:平面PCD;

求三棱錐的體積;

過(guò)B做平面與平面PAD平行,設(shè)平面截四棱錐所得截面面積為S,試求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,EA的中點(diǎn)(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市10000名職業(yè)中學(xué)高三學(xué)生參加了一項(xiàng)綜合技能測(cè)試,從中隨機(jī)抽取100名學(xué)生的測(cè)試成績(jī),制作了以下的測(cè)試成績(jī)(滿(mǎn)分是184分)的頻率分布直方圖.

市教育局規(guī)定每個(gè)學(xué)生需要繳考試費(fèi)100元.某企業(yè)根據(jù)這100000名職業(yè)中學(xué)高三學(xué)生綜合技能測(cè)試成績(jī)來(lái)招聘員工,劃定的招聘錄取分?jǐn)?shù)線(xiàn)為172分,且補(bǔ)助已經(jīng)被錄取的學(xué)生每個(gè)人元的交通和餐補(bǔ)費(fèi).

(1)已知甲、乙兩名學(xué)生的測(cè)試成績(jī)分別為168分和170分,求技能測(cè)試成績(jī)的中位數(shù),并對(duì)甲、乙的成績(jī)作出客觀的評(píng)價(jià);

(2)令表示每個(gè)學(xué)生的交費(fèi)或獲得交通和餐補(bǔ)費(fèi)的代數(shù)和,把的函數(shù)來(lái)表示,并根據(jù)頻率分布直方圖估計(jì)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案