【題目】在直角坐標系xOy中,點P到兩點(0,),(0,)的距離之和為4,設(shè)點P的軌跡為C,直線y=kx+1與A交于A,B兩點.
(1)寫出C的方程;
(2)若,求k的值.
【答案】(1)x21;(2)±
【解析】
(1)根據(jù)已知條件可判斷動點軌跡為橢圓,結(jié)合題意寫出橢圓方程即可;
(2)聯(lián)立直線方程與橢圓方程,根據(jù)韋達定理以及向量垂直,即可求得參數(shù).
(1)設(shè)P(x,y),由橢圓定義可知,
點P的軌跡C是以(0,),(0,)為焦點,長半軸為2的橢圓.
它的短半軸b1,
故曲線C的方程為x21.
(2)設(shè)A(x1,y1),B(x2,y2),
其坐標滿足,
消去y并整理得(k2+4)x2+2kx﹣3=0,
故x1+x2,x1x2,
若,即x1x2+y1y2=0.
而y1y2=k2x1x2+k(x1+x2)+1,
則x1x2+y1y21=0,
化簡得﹣4k2+1=0,
解得k=±.
科目:高中數(shù)學 來源: 題型:
【題目】直線l過曲線C:yx2的焦點F,并與曲線C交于A(x1,y1),B(x2,y2)兩點.
(1)求證:x1x2=﹣16;
(2)曲線C分別在點A,B處的切線(與C只有一個公共點,且C在其一側(cè)的直線)交于點M,求點M的軌跡.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在圓上任取一點,過點作軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).是曲線上的動點,將線段繞點順時針旋轉(zhuǎn)得到線段,設(shè)點的軌跡為曲線.以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(I)求曲線,的極坐標方程;
(II)在(I)的條件下,若射線與曲線,分別交于兩點(除極點外),且有定點,求面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個年級各抽取10名志愿者參賽。在規(guī)定時間內(nèi),他們檢索到的圖書冊數(shù)的莖葉圖如圖所示,規(guī)定冊數(shù)不小于20的為優(yōu)秀.
(Ⅰ) 從兩個年級的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;
(Ⅱ) 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),x∈R.
(1)若f(x)是偶函數(shù),求實數(shù)a的值;
(2)當a>0時,不等式f(sinxcosx)﹣f(4+t)≥0對任意的x∈恒成立,求實數(shù)t的取值范圍;
(3)當a>0時,關(guān)于x的方程在區(qū)間[1,2]上恰有兩個不同的實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com