已知a、b是異面直線,且a⊥b,
e 1
、
e 2
分別為取直線a、b上的單位向量,且a=2
e1
+3
e 2
,b=k
e 1
-4
e 2
,a⊥b,則實數(shù)k的值是
 
考點:數(shù)量積判斷兩個平面向量的垂直關系
專題:平面向量及應用
分析:由已知得
e1
e2
,
a
b
=(2
e1
+3
e 2
)•(k
e 1
-4
e 2
)=2k
e1
2
-12
e2
2
=0,由此能求出k=6.
解答: 解:∵a、b是異面直線,且a⊥b,
e 1
、
e 2
分別為取直線a、b上的單位向量,
e1
e2

a
=2
e1
+3
e 2
,
b
=k
e 1
-4
e 2
,
a
b
,
a
b
=(2
e1
+3
e 2
)•(k
e 1
-4
e 2

=2k
e1
2
-12
e2
2
=0,
∴2k=12,解得k=6.
故答案為:6.
點評:本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意向量垂直的性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正棱臺的頂點都在同一球面上,且側(cè)棱與下底面所成的角為
π
3
,上、下底面邊長分別為2,4,則該球的表面積為( 。
A、54πB、32π
C、16πD、8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某小組有男女學生若干人排成一排,其中女生5人,設M為恰有指定4名女生連排在一起的排法數(shù),N為全部男生連排在一起,全部女生也連排在一起的排法數(shù),已知5M=36N,試求這個小組的學生總數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且(2c-a)cosB=bcosA.
(1)求cosB的值;
(2)若a=3,b=2
2
,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sinA:sinB:sinC=k:k+1:2k(k>0),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|
x2
4
+
3y2
4
=1},B={y|y=x2},那么A∩B等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

畫出一個能夠判斷任意三個正數(shù)能否構(gòu)成三角形的程序框圖,如果構(gòu)成三角形并輸出三角形的形狀(銳角、直角或鈍角三角形)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,前n項和為Sn,an+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1,試求數(shù)列{bn}前3項的和T3
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說明理由;
(3)當p=
1
2
時,問是否存在n=N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設b>0,a≠0,若函數(shù)f(x)=
ax2+bx
的定義域與值域相等,則a=
 

查看答案和解析>>

同步練習冊答案