【題目】某高中志愿者男志愿者5人,女志愿者3人,這些人要參加社區(qū)服務(wù)工作.從這些人中隨機(jī)抽取4人負(fù)責(zé)文明宣傳工作,另外4人負(fù)責(zé)衛(wèi)生服務(wù)工作.
(Ⅰ)設(shè)為事件;“負(fù)責(zé)文明宣傳工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件
發(fā)生的概率;
(Ⅱ)設(shè)表示參加文明宣傳工作的女志愿者人數(shù),求隨機(jī)變量
的分布列與數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由兩個全等的菱形
和
組成的空間圖形,
,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形
中,
,過
分別作
,
,垂足分別
,
,已知
,將梯形
沿
同側(cè)折起,得空間幾何體
,如圖
.
1
若
,證明:
平面
;
2
若
,
,線段
上存在一點(diǎn)
,滿足
與平面
所成角的正弦值為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線
時,表示收入完全不平等記區(qū)域
為不平等區(qū)域,
表示其面積,
為
的面積.將
,稱為基尼系數(shù).對于下列說法:
①越小,則國民分配越公平;
②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對
,均有
;
③若某國家某年的勞倫茨曲線近似為,則
;
④若某國家某年的勞倫茨曲線近似為,則
.
其中不正確的是:( )
A.①④B.②③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐C﹣ABNM中,四邊形ABNM的邊長均為2,△ABC為正三角形,MB,MB⊥NC,E,F分別為MN,AC中點(diǎn).
(Ⅰ)證明:MB⊥AC;
(Ⅱ)求直線EF與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省開展“精準(zhǔn)脫貧,攜手同行”的主題活動,某貧困縣統(tǒng)計了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計結(jié)果見下表.
走訪數(shù)量區(qū)間 | 頻數(shù) | 頻率 |
b | ||
10 | ||
38 | ||
a | 0.27 | |
9 | ||
總計 | 100 | 1.00 |
(1)求a與b的值;
(2)根據(jù)表中數(shù)據(jù),估計這100名基層干部走訪數(shù)量的中位數(shù)(精確到個位);
(3)如果把走訪貧困戶不少于35戶視為“工作出色”,按照分層抽樣,從“工作出色”的基層干部中抽取4人,再從這4人中隨機(jī)抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為2的等邊和有一內(nèi)角為
的直角
所在半平面構(gòu)成
的二面角,則下列不可能是線段
的取值的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
中,
,
,
,
的面積為1,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓
上一點(diǎn),
、
是橢圓的左右兩個焦點(diǎn),直線
、
分別交
于
、
,是否存在點(diǎn)
,使
,若存在,求出
點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com