【題目】某高中志愿者男志愿者5人,女志愿者3人,這些人要參加社區(qū)服務(wù)工作.從這些人中隨機抽取4人負(fù)責(zé)文明宣傳工作,另外4人負(fù)責(zé)衛(wèi)生服務(wù)工作.

(Ⅰ)設(shè)為事件;“負(fù)責(zé)文明宣傳工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件發(fā)生的概率;

(Ⅱ)設(shè)表示參加文明宣傳工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學(xué)期望.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)從8人中隨機抽取4人負(fù)責(zé)文明宣傳的基本事件的總數(shù)為,事件包含基本事件的個數(shù)為,利用古典概型的計算公式,即可求解.

(Ⅱ)由題意,得到隨機變量可取的值,求得相應(yīng)的概率,得出相應(yīng)的分布列,利用期望的公式,即可求解.

(Ⅰ)從8人中隨機抽取4人負(fù)責(zé)文明宣傳的基本事件的總數(shù)為,事件包含基本事件的個數(shù)為,則.

(Ⅱ)由題意知可取的值為:0,1,2,3.

,

,

因此的分布列為

0

1

2

3

的數(shù)學(xué)期望是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由兩個全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:

2)如果二面角BEFD的平面角為60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,,過分別作,垂足分別,已知,將梯形沿同側(cè)折起,得空間幾何體 ,如圖

1,證明:平面;

2,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,的面積.將,稱為基尼系數(shù).對于下列說法:

越小,則國民分配越公平;

②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有

③若某國家某年的勞倫茨曲線近似為,則;

④若某國家某年的勞倫茨曲線近似為,則

其中不正確的是:(

A.①④B.②③C.①③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐CABNM中,四邊形ABNM的邊長均為2,△ABC為正三角形,MB,MBNCE,F分別為MNAC中點.

(Ⅰ)證明:MBAC;

(Ⅱ)求直線EF與平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省開展精準(zhǔn)脫貧,攜手同行的主題活動,某貧困縣統(tǒng)計了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計結(jié)果見下表.

走訪數(shù)量區(qū)間

頻數(shù)

頻率

b

10

38

a

0.27

9

總計

100

1.00

1)求ab的值;

2)根據(jù)表中數(shù)據(jù),估計這100名基層干部走訪數(shù)量的中位數(shù)(精確到個位);

3)如果把走訪貧困戶不少于35戶視為工作出色,按照分層抽樣,從工作出色的基層干部中抽取4人,再從這4人中隨機抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓中,,,的面積為1,

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點,、是橢圓的左右兩個焦點,直線、分別交、,是否存在點,使,若存在,求出點的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案