(05年山東卷理)(12分)

已知是函數(shù)的一個極值點,其中,

(I)求的關(guān)系式;

(II)求的單調(diào)區(qū)間;

(III)當(dāng)時,函數(shù)的圖象上任意一點的切線斜率恒大于3,求的取值范圍.

解析:(I)

是函數(shù)的一個極值點

,即

(II)由(I)知,=

當(dāng)時,有,當(dāng)變化時,的變化如下表:

1

0

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

故有上表知,當(dāng)時,單調(diào)遞減,在單調(diào)遞增,在上單調(diào)遞減.

(III)解法一:由已知得,即

設(shè),其函數(shù)開口向上,由題意知①式恒成立,

解之得所以

的取值范圍為

解法二:由已知,得>3,即3(-1)[-(1+)]>3

<0

∴(-1)[-(1+)]<1      (*)

=1時,(*)化為0<1恒成立,∴<0

≠1時,∵[-1,1],∴-2≤-1<0

(*)式化為<(-1)-

=-1,則[-2,0),記,則在區(qū)間[-2,0)是單調(diào)增函數(shù)

由(*)式恒成立,必有,又<0,則

綜合1°、2 °得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨立.

(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;

(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為,求隨機變量的期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A=, =

(1)求A的特征值及對應(yīng)的特征向量;  

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中一模理) (14分)

由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項公式;

(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實數(shù)的范圍;

(3)設(shè),若數(shù)列的反數(shù)列為,的公共項組成的數(shù)列為;求數(shù)列項和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年遼寧卷)(12分)

已知函數(shù).設(shè)數(shù)列滿足,,數(shù)列滿足

,

(Ⅰ)用數(shù)學(xué)歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年湖北卷文)(12分)

設(shè)數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且

   (Ⅰ)求數(shù)列的通項公式;

   (Ⅱ)設(shè),求數(shù)列的前n項和Tn.

查看答案和解析>>

同步練習(xí)冊答案