一個(gè)不透明的袋中有4個(gè)除顏色外其他都相同的小球,其中紅球1個(gè),白球2個(gè),黑球1個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取1個(gè),若取到紅球記2分,取到白球記1分,取到黑球記0分,則連續(xù)取兩次球所得分?jǐn)?shù)之和為2或3的概率為
 
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:利用列舉法寫(xiě)出連續(xù)取兩次的事件總數(shù)情況,共16種,從中數(shù)出連續(xù)取兩次分?jǐn)?shù)之和為2或3分的種數(shù),求出它們的比值即為所求的概率.
解答: 解:設(shè)連續(xù)取兩次的事件為:
(紅,紅),(紅,白1),(紅,白2),(紅,黑);
(白1,紅)(白1,白1)(白1,白2),(白1,黑);
(白2,紅),(白2,白1),(白2,白2),(白2,黑)
(黑,紅),(黑,白1),(黑,白2),(黑,黑),
共16種情況,其中連續(xù)取兩次分?jǐn)?shù)之和為2或3分的種數(shù)的事件有:
(紅,白1),(紅,白2),(紅,黑),(白1,紅),(白2,紅),
(黑,紅),(白1,白2),(白2,白1),(白2,白2),(白1,白1),共10種情況,
故連續(xù)取兩次球所得分?jǐn)?shù)之和為2或3的概率為
5
8
點(diǎn)評(píng):本題考查概率的求法與運(yùn)用,一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
m
n
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的公比為q,且滿足an+1<an,a1+a2+a3=
13
9
,a1a2a3=
1
27

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{(2n-1)•an}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x=
π
4
是函數(shù)f(x)=asinx-bcosx(ab≠0)圖象的一條對(duì)稱軸,則直線ax+by+c=0的傾斜角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若9S5+5S9=90,則S7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
π
0
(cosx-sinx)dx,則二項(xiàng)式(x2+
a
x
6展開(kāi)式中的x3項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面直角坐標(biāo)系xOy內(nèi)直線l的參數(shù)方程為
x=t
y=t-2
(t為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系(取相同的長(zhǎng)度單位),圓C的極坐標(biāo)方程為ρ=2
2
sin(θ+
π
4
),則直線l與圓C的公共點(diǎn)的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若?θ∈R,使sinθ≥1成立,則cos(θ-
π
6
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的兩個(gè)方程a1-x=x,a1+x=-x的解分別為m,n(其中a>1的常數(shù)),則m+n的值(  )
A、大于0
B、小于0
C、等于0
D、以上值都不對(duì),與a的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F是拋物線y2=4x焦點(diǎn),M,N是該拋物線上兩點(diǎn),|MF|+|NF|=6,則MN中點(diǎn)到準(zhǔn)線距離為(  )
A、
3
2
B、2
C、3
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案