已知:

(1)求;

(2)判斷此函數(shù)的奇偶性;

(3)若,求的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足

(1)求,

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

擲一枚均勻的硬幣兩次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.下列結(jié)果正確的是( )

A.P(M)=,P(N)=

B.P(M)=,P(N)=

C.P(M)=,P(N)=

D.P(M)=,P(N)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

若向量兩兩所成的角相等,且等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

商丘一高某社團(tuán)為了了解“早餐與健康的關(guān)系”,選取某班共有60名學(xué)生,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取6名學(xué)生做“早餐與健康”的調(diào)查,為此將學(xué)生編號為1,2,…,60.選取的這6名學(xué)生的編號可能是( )

A.1,2,3,4,5,6 B.6,16,26,36,46,56

C.1,2,4,8,16,32 D.3,9,13,27,36,54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)y=f(x)是y=ax的反函數(shù),而且f(x)的圖象過點(diǎn)(4,2),則a=_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.南宋數(shù)學(xué)家楊輝研究了垛積與各類多面體體積的聯(lián)系,由多面體體積公式導(dǎo)出相應(yīng)的垛積術(shù)公式.例如方亭(正四梭臺)體積為V=$\frac{h}{3}$(a2+b2+ab)其中a為上底邊長,b為下底邊長,h為高.楊輝利用沈括隙積術(shù)的基礎(chǔ)上想到:若由大小相等的圓球垛成類似于正四棱臺的方垛,上底由a×a個球組成,以下各層的長、寬依次各增加一個球,共有n層,最下層(即下底)由b×b個球組成,楊輝給出求方垛中物體總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$).根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知過雙曲線$\frac{x^2}{4}$-y2=1的右焦點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),若有且僅存在三條直線使得|AB|=a,則實(shí)數(shù)a的取值范圍為{4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長為2$\sqrt{2}$+$\sqrt{5}$的△ABC滿足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步練習(xí)冊答案