若奇函數(shù)f(x)在[-6,-2]上是減函數(shù),且最小值是1,則它在[2,6]上是( 。
A、增函數(shù)且最小值是-1
B、增函數(shù)且最大值是-1
C、減函數(shù)且最大值是-1
D、減函數(shù)且最小值是-1
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)和單調(diào)性之間的關(guān)系,即可得到結(jié)論.
解答: 解:∵奇函數(shù)f(x)在[-6,-2]上是減函數(shù),且最小值是1
∴函數(shù)f(x)在[2,6]上是減函數(shù)且最大值是-1,
故選:C
點(diǎn)評:本題主要考查函數(shù)奇偶性與單調(diào)性之間的性質(zhì)的應(yīng)用,比較檢查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有一片樹林現(xiàn)有木材儲蓄量為7100cm3,要力爭使木材儲蓄量20年后翻兩番,即達(dá)到28400cm3
(1)求平均每年木材儲蓄量的增長率.
(2)如果平均每年增長率為8%,幾年可以翻兩番?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+x2-2ax在[-1,2]上是增函數(shù),則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2-2x+5=0的一個(gè)根是1-2i,則另一個(gè)根為( 。
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=20.5,b=log23,c=log2
2
2
,則有(  )
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中正確的有( 。
①若任取x1,x2∈I,當(dāng)x1<x2時(shí),f (x1)<f (x2),則y=f (x)在I上是增函數(shù);
②函數(shù)y=x2在R上是增函數(shù);  
③函數(shù)y=-
1
x
在定義域上是增函數(shù);
④y=
1
x
的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-ax2+bx.
(1)若a>0,b>0,且不等式f(x)≤1在R上恒成立,求證:b≤2
a
;
(2)若a=-
1
4
,且不等式f(x)≤1在[0,1]上恒成立,求實(shí)數(shù)b的取值范圍;   
(3)設(shè)0<a<1,b>0,求不等式|f(x)|≤1在x∈[0,1]上恒成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2(x≤-1)
x2(x>0)

(1)求f(-4)、f(f(-1))的值;
(2)若f(a)=
1
4
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x|與g(x)=x(2-x)的單調(diào)增區(qū)間依次為( 。
A、(-∞,0],[1,+∞)
B、(-∞,0],(-∞,1]
C、[0,+∞),[1,+∞)
D、[0,+∞),(-∞,1]

查看答案和解析>>

同步練習(xí)冊答案