數(shù)列{an}中,Sn為其前n項(xiàng)和,a1=4,an=Sn-1+2n+1(n≥2),求a2015
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由于an=Sn-1+2n+1(n≥2),an+1=Sn+2(n+1)+1.相減化為an+1-an=an=+2,變形an+1+2=2(an+2),利用等比數(shù)列的通項(xiàng)公式即可得出.
解答: 解:∵an=Sn-1+2n+1(n≥2),∴an+1=Sn+2(n+1)+1.
∴an+1-an=an=+2,
化為an+1+2=2(an+2),
∴數(shù)列{an+2}是等比數(shù)列,
∴an+2=6×2n-1,
an=3×2n-2.
∴a2015=3×22015-2.
點(diǎn)評(píng):本題考查了遞推式的意義、等比數(shù)列的相同公式,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在正整數(shù)a,使得1n+3n+(2n-1)n
e
e-1
(an)n
對(duì)一切正整數(shù)n均成立?若存在,求a的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+1)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)設(shè)g(x)=f(x)-ax2,直線l是曲線y=g(x)的一條切線.證明:曲線y=g(x)上的任意一點(diǎn)不可能在直線l的上方;
(Ⅲ)求證:對(duì)任意正整數(shù)n都有
21
21+1
×
22
22+1
×…×
2n
2n+1
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線C與橢圓
x2
9
+
y2
5
=1有相同的焦點(diǎn),且與雙曲線
y2
3
-
x2
9
=1共漸近線,則雙曲線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,
n+1
n
an=
n
n-1
an-1+1(n≥2),則數(shù)列{an}的通項(xiàng)an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F(
1-x
1+x
)=x,則下列等式正確的是( 。
A、F(2-x)=1-F(x)
B、F(-x)=
1+x
1-x
C、F(x-1)=F(x)
D、F(F(x))=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,b2=5,又a1+b1,a2+b2,a3+b3成等比數(shù)列,若cn=anbn,求Cn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,圓C的參數(shù)方程為
x=-
2
2
+rcosθ
y=-
2
2
+rsinθ
(θ為參數(shù),r>0),以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)
=1,
(Ⅰ)寫出圓C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)若圓C上的點(diǎn)到直線l的最大距離為3,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
-
2
x2
)n
的展開式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為1024.
(1)求n的值;
(2)求展開式中的常數(shù)項(xiàng);
(3)求展開式中含有理項(xiàng)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案