【題目】已知兩條拋物線Cy22xEy22pxp0p1),MC上一點(異于原點O),直線OME的另一個交點為N.若過M的直線lE相交于A,B兩點,且△ABN的面積是△ABO面積的3倍,則p_____

【答案】4

【解析】

由題意設M的坐標,求出直線OM的方程,與拋物線E聯(lián)立求出N的坐標,設直線AB的方程,求出ON到直線AB的距離,求出△ABN的面積與△ABO面積之比,再由△ABN的面積是△ABO面積的3倍可得p的值.

,則直線OM的方程為,即,代入y22pxp0p1),

可得,即,

由題意可得顯然直線AB的斜率不為0,設直線AB的方程為

,顯然,否則AB過原點,不符合題意,

所以O到直線AB的距離N到直線AB的距離

因為

所以,因為

所以,解得

故答案為:4

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義:若數(shù)列滿足所有的項均由,1構成且其中個,1,則稱為“數(shù)列”.

1,,為“數(shù)列”中的任意三項,則使得的取法有多少種?

2,,為“數(shù)列”中的任意三項,則存在多少正整數(shù)對使得,且的概率為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國在北宋1084年第一次印刷出版了《算經(jīng)十書》,即賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數(shù)書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》、《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》和《四元玉鑒》.這些書中涉及的很多方面都達到古代數(shù)學的高峰,其中一些算法如開立方和開四次方也是當時世界數(shù)學的高峰.某圖書館中正好有這十本書現(xiàn)在小明同學從這十本書中任借兩本閱讀,那么他取到的書的書名中有字的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在四棱錐中,底面為等腰梯形,,,點在底面的投影恰好為的交點,.

1)證明:

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,,的中點,四邊形是等腰梯形,,

(Ⅰ)求異面直線所成角的正弦值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求函數(shù)的解析式,并證明:.

(2)已知,且函數(shù)與函數(shù)的圖象交于,兩點,且線段的中點為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,D,E分別為AB,AC的中點,ODE的中點,AB=AC=2,BC=4.將ADE沿DE折起到A1DE的位置,使得平面A1DE平面BCED,如下圖.

(Ⅰ)求證:A1OBD;

(Ⅱ)求直線A1C和平面A1BD所成角的正弦值;

查看答案和解析>>

同步練習冊答案