B
分析:先由f(x+3)=-
,得函數(shù)周期為6,得到f(7)=f(1);再利用y=f(x+3)的圖象關(guān)于y軸對(duì)稱得到y(tǒng)=f(x)的圖象關(guān)于x=3軸對(duì)稱,進(jìn)而得到f(1)=f(5);最后利用條件(2)得出結(jié)論.
解答:因?yàn)閒(x+3)=-
,
所以f(x+6)=-
=-
=f(x);
即函數(shù)周期為6,故f(7)=f(1).
又因?yàn)閥=f(x+3)的圖象關(guān)于y軸對(duì)稱,
所以y=f(x)的圖象關(guān)于x=3軸對(duì)稱.
所以f(1)=f(5).
又對(duì)任意3≤x
1<x
2≤6,都有f(x
1)<f(x
2);
所以f(3)<f(4.5)<f(5)=f(1)=f(7).
故選B.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性,周期性與單調(diào)性的綜合問題.解決本題的關(guān)鍵有兩處:①由f(x+3)=-
,得函數(shù)周期為6;②由y=f(x+3)的圖象關(guān)于y軸對(duì)稱得到y(tǒng)=f(x)的圖象關(guān)于x=3軸對(duì)稱.